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Kant’s Copernican revolution 

“Up to now it has been assumed that all our cognition must conform to the objects; but all 
attempts to find out something about them a priori through concepts that would extend our 
cognition have, on this presupposition, come to nothing. Hence let us once try whether we do 
not get farther with the problems of metaphysics by assuming that the objects must conform 
to our cognition” 



The views of the fathers of quantum mechanics 

“[T]he finite magnitude of the quantum of action prevents an altogether sharp 
distinction being made between the phenomenon and the agency by which it is 
being observed.” 
 
“We meet here in a new light the old truth that in our description of nature the 
purpose is not to disclose the real essence of the phenomena but only to track 
down, so far as it is possible, relations between the manifold aspects of our 
experience.” 



We "objectivate" a statement if we claim that its content does not depend on the conditions under which it 
can be verified. Practical realism assumes that there are statements that can be objectivated and that in fact 
the largest part of our experience in daily life consists of such statements. Dogmatic realism claims that 
there are no statements concerning the material world that cannot be objectivated. Practical realism has 
always been and will always be an essential part of natural science. Dogmatic realism, however, is, as we see 
it now, not a necessary condition for natural science. [...] Metaphysical realism goes one step further than 
dogmatic realism by saying that "the things really exist." 

The views of the fathers of quantum mechanics 



“[T]here remains still in the new kind of theory an objective reality, inasmuch as these theories 
deny any possibility for the observer to influence the results of a measurement, once the 
experimental arrangement is chosen. Therefore particular qualities of an individual observer do 
not enter the conceptual framework of the theory.” 

The views of the fathers of quantum mechanics 



The Copenhagen interpretation in reverse 

Epistemic interpretation 

Copenhagen interpretation 

Quantum mechanics 
forced upon us by experiment 

Dirac equation 
Entropy 
Gauge principle 
Pauli’s exclusion principle 
… 

The present approach 

Epistemic assumptions  
”forced upon us” by the 
forms of cognition  

Epistemic formalism 

Quantum mechanics 
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Intertwined dualism 

Assumption of detailed materialism Each detail of a state of awareness 
corresponds to a detail of the state of objects in the body. 

Objective  
aspect 

Subjective 
aspect 

World 

Awareness 

Body 



Knowledge:  Aware perceptions with proper interpretation 

Knowledge 

We have to assume a transcendent distinction between 
proper and improper interpretations: ”The truth is out there” 

Direct experience Interpretation 

P
h

ys
ic

al
 l

aw
 



Current 
knowledge 

Current potential 
knowledge 

Currently unknowable 

Unknowable (not part of the world) 

Knowledge   Those present aware perceptions 
   that we interpret properly at (virtually) the same moment 
 
Potential knowledge Knowledge based  on present perceptions that we 
   potentially may become aware of and interpret properly 
   now or later 

Knowledge and potential knowledge 



Complete and incomplete knowledge 
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Conditional  and defocused 
knowledge 

Defocused knowledge Conditional knowledge 
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Individual and collective knowledge 

O1 

S1 S2 S3 

O3 

Subjects: 

Objects: 

PK1 

PK2 

PK3 

O3 
O1 

O2 

O2 
r12

1 

r2
1 

r3
23 

Individual subjects k 

has potential know- 
ledge PKk about 
objects Ol 

Symmetric relations 
between objects in 
the objective aspect 
and individuals in 
the subjective aspect 



Knowledge is incomplete 

Motivation 
The bodies of aware observers are a proper subset of all objects in the world, since we must 
leave room for the internal process of interpretation to speak about known objects at all. According 
to detailed materialism, a complete knowledge about the world would then be a proper subset 
of itself. This is possible only if the world is fractal. The seeming existence of elementary particles 
contradicts this possibility. Thus knowledge must be incomplete at any given time. 

Body Outside world 

Physical state of world 

Knowledge of world 

Physical state 
of body 

Knowledge 
of world 

World 

Aware-
ness 

Body 

Statement There is something currently unknowable 



The physical state 

State space S Knowledge space K 

PK 

AK S 

AS 

Z PK0 

Each state of complete knowledge about the world corresponds to an element Z in 
state space S. Such an element corresponds to precise knowledge about all internal 
and relational attributes of all elementary particles. 
 
The physical state S is the union of all Z that cannot be excluded by the 
current collective potential knowledge PK.  

PK0 = Rudimentary awareness ’There is something’ 
AK = Current aware knowledge 



State space 
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Knowability of the physical state 

State space 

Knowledge space 

PK 

S 

To pinpoint the boundary of S exactly we have to 
be able to distinguish between two exact states Z and Z’ 
at either side of this boundary. The fundamental 
incompleteness of knowledge makes this impossible. 
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State space Knowledge space 

PK = S = 

State space and knowledge space 

The physical state given two logically related items of knowledge 



State space and knowledge space 

Individual and collective states 

S1 S2  

S = S3  
State space Knowledge space 

Subject 1 S1 

S3 

S2 Subject 2 

Subject 3 

PK1 

PK3 

PK2 

PK1 PK2  PK = PK3  

Each individual state Sk must overlap 
all the others – otherwise the knowledge 
of two subjects contradict each other! 



Guiding principles for physical law I 

Physics 
Metaphysics 

Wrong answers 

Epistemic minimalism 
Physics spits out wrong answers if we try to feed it with metaphysics 
 
 
 
 
 
 
 
 
 
 
 
 
Metaphysics = entities or distinctions that are impossible to observe in principle 
(Objective Newtonian orbits, angular momentum of spherical objects, 
interchange of identical particles, …) 



Guiding principles for physical law I 

Epistemic completeness 
Physics need and swallow all kinds of perceptions and distinctions between 
perceptions 
 
 
 
 
 
 
 
 
 
 
 
 
Epistemic minimalism + Epistemic completeness = Epistemic closure 

Physics 

Epistemics 

Swallows 
all of it 



Guiding principles for physical law II 

PK1’ 

PK2’ 

PK1 

PK2 
PK1 

PK2 

PK1’ 

PK2’ 

R 

R R 

Collective epistemic invariance 
The same evolution rule R applies regardless the content and the amount 
of potential knowledge PK 

Individual epistemic invariance 
The same evolution rule R applies to an object k regardless who possesses the individual 
potential knowledge PKj

k  about k. This means that R must be invariant to a change of 
perspective from one subject to another, leading the requirement of Lorentz invarance.  

R 

R 

PK1 

PK2 

R(PK1 PK2) = RPK1      RPK2  

  



Guiding principles for physical law III 

Epistemic consistency 
A) Retrodictions about the past from present knowledge should never contradict 
memories of the past. 
 
B) Retrodictions about the past that are made possible by new knowledge acquired 
at present should never increase the knowledge about the past in such a way that this 
expanded state of knowledge would have evolved to a different present state of knowledge 
than that we actually have 

PK(n’) PK(n) 

Retrodictions 

PK(n’) PK(n) 

PK ’(n’)=PK(n’) PKnew(n) 



Some consequences of the guiding principles I 

Consequences of epistemic closure 
 
The evolution R cannot act on each exact states Z individually, but must act on states 
that may correspond to a state of potential knowledge, such as the physical state S. 
 
Perceivable matter is fermionic – obeys Pauli’s exclusion principle. 
 
To treat the exchange of identical particles as a different state gives rise to wrong 
statistics (Maxwell-Boltzmann rather tham Fermi-Dirac or Bose-Einstein) 
 
Spherically symmetric states must have zero angular momentum.  
 
Physical law cannot be parity invariant. 
 
There must be a finite highest possible speed (c) that all subjects agree about 
(Individual epistemic invariance is also needed) 
 
Physical law is rotationally and translationally invariant (both spatially and 
temporally) 
 
There must be interference-like phenomena (see next slide). 



Some consequences of the guiding principles 
- towards interference 

p1 p2 

pr1 pr2 

pr 

Path information belongs to 
potential knowledge 
 
pr = p1pr1 + p2pr2 

Path information does not belong to 
potential knowledge 
 
pr ≠ p1pr1 + p2pr2 



Consequences of epistemic invariance 
 
Reductionism 
 
The equivalence principle (see next slide) 
 
 
Consequences of individual epistemic invariance 
 
Lorentz invariance 
(Epistemic closure in the form of epistemic minimalism is also needed) 

 
 
Consequences of epistemic consistency 
 
Wave function collapse without observation (see second next slide) 

Some consequences of the guiding principles II 



Some consequences of the guiding principles 
- the equivalence principle 
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Some consequences of the guiding principles 
- wave function collapse without observation 

a) 

n’ 

b) 

n 

n’ 

˄ 

ON 
OFF 

Source Source 

p1 p2 p1 p2 

p’ p’ 

Two particles are 
emitted in opposite 
directions 

The particle travelling 
away from the slits 
is deflected into one of 
two detectors that may 
be far away and may or 
may not be turned on. 

By epistemic consistency, 
path information must be 
gained at the passing of 
the slits even if nobody 
observes the passing. 

This corresponds to the 
collapse of the wave 
function and loss of inter- 
ference pattern 

The particle travelling 
away from the slits enters 
a ”cloud” that makes it 
impossible ever to tell 
its angle of entry into the 
cloud if it is detected later.   

This means that path 
Information about  which 
slit the particle passes 
cannot be gained. 

Two particles are 
emitted in opposite 
directions 

This corresponds to the 
survival of the wave 
function and appearance of 
interference pattern 
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The evolution operator 

Sequential time n 
The physical state S is updated every time the potential knowledge PKk of some subject k 
changes. We then write n → n + 1 och S(n) → S(n+1).  

The evolution operator u1 is defined by the condition that u1S(n) is the smallest 
possible set C ⊆  S such that physical law dictates that S(n + 1) ⊆ C. 

S(n) 

u1S(n) 

S(n+1) 

S(n) and S(n+1) subjectively distinct by definition                S(n) ∩ u1S(n) = 0 



Alternatives SOj 

SO(n) 

uO1SOO(n+m-1) SOO(n+m) 

SO1(n) 

SO2(n) 

SO1(n+m) 

SO2(n+m) 

SO1(n+m) 

State 
reduction 

uO1SOO = uO1UjSOj = UjuO1SOj ”Linear” evolution of alternatives: 

SOO(n) ⊆ S0 is the union of all states Z0 of complete knowledge of an object O 
that are not excluded by the knowledge about O. 
 
The alternatives SOj corresponds to states of the object that may arise 
if we learn more about it 



Identifiability 

SOO(n) 

SOO(n+1) 

SOO(n+2) 

SOO(n+3) 

SOO(n+4) 

SOO(n+5) 

SOO(n+6) 

SOO’(n+7) 

The object O for which some alternative may turn out to be true at some future time 
must be possible to follow through time in such a way that it can be considered 
’the same’ at different times. 

Object state space SO 

O is identifiable 
in the time 
interval [n, n+6] 



Properties 

State space SO 

Property space PO 

SO1 SO2 

State S 

p1 p2 p3 

The realization of an alternative can often be seen as the observation of a particular 
value of some property. 
 
A property P is a statement about the attributes of a set of objects. 
We may express its value p as p = f({vil}) where vil is the value of attribute Ai och object Ol.   

The property space PO is the union of all states ZO of exact knowledge for which there are 
objects such that property P can be defined for the object O. 



Levels of knowability of a set of alternatives 

1) It will never become known which alternative is true. 
No property value pj that corresponds to the alternative SOj in the set {SOj} can 
ever be observed given the present physical object state SOO(n). 
 
2) It may become known which alternative is true. 
There is a time n > n such that it is possible that such a property value pj is 
observed at some time n’ ≥ n, so that SOO(n’) = SOj(n’), but it is not dictated by 
physical law that this will happen. We let n be the smallest possible such time. 
 
3) It will become known which alternative is true. 
There is also a time n > n such that physical law dictates that one of the 
property values pj will be observed at some time n’ ≤ n, so that SOO(n’) = SOj(n’). 
We let n be the smallest possible such `deadline for decision'. 

^ 

^ 
^ 

^ 
^ 

^ 



Complete sets of future alternatives 

A set of alternatives {SOj} is a complete set of future alternatives if and only if 
 
Each property value pj that corresponds to an alternative SOj in {Sj} may be 
observed at some time n ≥ n+1, given the present physical state SOO(n). 
 
One of the property values in the set {pj} that corresponds to {SOj}  will be 
observed at some time n ≥ n+1. 
 
The property P and the set of possible values {pj} are defined in such a way 
that if pj is observed at time n, then we can never observe any other property 
value in the set {pj} at a later time. 

^ 

^ 

^ 

The future alternative SOj is the union of those states SOO 

which has the value pj of property P, or will have it as SOO evolves. 



Observational setups 

O 

OB 

OB 

OS OA 

OB 

OS 

OM 

OD 

Physics formulates laws of nature in terms of the behaviour of  specimens 

Necessary objects in any observation 

Body OB of 
observer 

Observed 
Object O 

The specimen OS 
for which a set 
of alternatives is 
defined 

Apparatus OA 
used to decide 
the corresponding 
property of 
the specimen 

A change of the 
detector OD defines 
the outcome of the 
experiment when 
the specimen is a 
quasiobject. 

Objects involved in an experiment 



The observational context C 

C is the potential knowledge contained in the state SOO of the observed object O, 
together with a sequence of complete sets of alternatives {Sj}, {Sj’}, …{Sj

(F)} that 
corresponds to a series of properties P, P’, …, P(F) observed in sequence. 
 
These properties are defined for a specimen OS that is part of O. 
 
The knowability level associated with each property should be 1 or 3 at the start 
of the experiment , and the knowability level associated with P(F) should be 3. 

A context is initiated at some given time n, which is a point of no return: 
after that the sequence of properties will be observed according to the above. 



The observational setup in state space 

Property space  

PO1 

PO2 

PO 

SO1 

SO2 

SP1 

SP2 

S0O 

SC 

The property value state SPj ↔ The knowledge about the nature of the specimen OS, 
together with knowledge about the value pj of one of its unknown properties P. 

POj is the union of all 

states for which the 
value of P is or will 
be pj. 

~ 

~ 

~ 

SOj is a future alternative 
defined within the 
observational context C. 



The contextual state SC 

Consider an observational context C which is initiated at time n in which a series of 
properties P, P’, …, P(F) of the specimen OS is observed at the times  n+m, n+m’, …, n+m(F). 
 
 
Then SC(n’) is defined for n ≤ n’ ≤ n+m(F)  and corresponds to the potential knowledge  
of these properties at time n’, in addition to prior knowledge about the nature 
of the specimen. 
 
 

We always have SC(n)= UjSPj  = UjSP’j  = UjSP(F)j  

SC is a contextual state since it corresponds to the knowledge of OS as seen 
via the apparatus OA, arranged to record a set of properties, predefined by 
the observer with body OB. That is, OA and OB are necessary to define SC. 



The observation sequence 

P1 

P2 

uO1SC(n+m-1) 
=SC(n) 

uO1S0(n+m-1) 

SC(n+m’) 
=SP1 SP’2 

S0(n+m’) 

SC(n+m) 
=SP1 

S0(n+m) 

P1’ P2’ 

SC(n+m’) 
=SP’2 

S0(n+m’) 

P and P’ not simultan- 
eously knowable 

P and P’ simultan- 
eously knowable 

When two properties P and P’ with binary values are observed 

~ 

~ 

~ ~ 



Simultaneous knowability 

Knowledge is incomplete  There are pairs of properties P and P’ whose 
    values are not simultaneously knowable 

P and P’ simultaneously knowable 

P and P’ not simultaneously knowable 

SO(n) umSO(n) SO(n+m) 

SO(n) umSO(n) SO(n+m) 

PO1’ PO2’ 

PO1 

PO2 
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Structure of state space 

v 

A1 

A2 

u1j u1k u1l 

A3 

u3j u3k 

Attribute values are ordered: 
in a triplet of different values, 
there is alwas one which is in 
between the other two. 

Assumption All knowledge can be 
Expressed in terms of objects, 
attributes and their values 

The axes defined by the attributes Aj 
span state space S. Each object that 
may be present is allowed its own 
set of such axes. 

Attribute values may be directed: 
then, in a pair of different values, 
one always succeed another. 

Attributes may be internal or 
relational. 



Measure V on state space 

The attribute value space S(A, u) ⊆ S is the set of exact states Z for which there is 
at least one object for which the attribute A is defined and for which its value is u. 
 
 
The state space volume V: 
 

V[S(A, u)] = V[S(A, u’)] for any A and any pair of values (u, u’) allowed by physial law 
V[S1 ∪ S2] = V[S1] + V[S2] for any pair of disjoint sets (S1, S2) in state space S. 
V[Z] = 1 
 
 
The relative volume v: 
 

vj ≡ V[Sj]/V[S] for any partition S = Uj Sj 

S1 S2 S3 

S 



Existence of probability 

to subjectivley preconceived alternatives Sj applying to a system O 
with initial state SO. 
 
to realizable such alternatives. 
 
to future alternatives. 
 
to a complete set of future alternatives at knowability level 3. 
 
if it is knowable a priori, before the trial is carried out. This means that the set of 
future alternatives must be repeatable, or they must have a preconceived symmetry.  

An epistemically meaningful notion of probability can only be assigned 

Probabilities cannot be associated with all non-deterministic state reductions 
SO(n+1)  u1SO(n). They cannot be associated with reductions of the universal 
state S(n), since an external observer that predefines alternatives is needed. 



When it exists, probability is relative volume v 

Let qj be the probability for the future alternative SOj. In general we may write 
 
qj = f[SOj, {SOj’}, SOO, S]. 
 
However,  the object O to which qj apply must be isolated from the environment 
if qj is obtained by repeated preceding trials. If qj  is deduced by symmetry, everyting 
that affects these symmetries must be included in O. In either case we may drop S as 
an argument. We may also drop {Sj’} if we exclude ’mental influences’ on qj. 
 
The axioms of probability can then be written 
 
f[SOj, SOO] ≥ 0 
f[SOO, SOO] = 1 
f[SOj ∪ SOj’, SOO] = f[SOj, SOO]  + f[SOj’, SOO] 
 
These relations are always fulfilled if and only if 
 
qj = vj = V[SOj]/V[SOO]  



Probability is a macroscopic quantity 

Spin state of electron 
(with x-axis defined) 

State of observational setup 
to measure spin of the electron 

q1 = v1 

SO1 SO2 

sx = -1/2 sx = 1/2 sx = -1/2 sx = 1/2 

q2 = v2 

SOO Se 

SP1 SP2 

v1 = 1/2 v2 = 1/2 

Se is the object state of the electron. 
There are equally many states of the 

world consistent with either spin value: 
V[SP1] = V[SP2]. v1 = v2 = ½ is not the 
probability to observe these values 

SOO is the object state of the obser- 
vational setup, including electron OS 
and apparatus OA.  The knowledge 

about O of the observer with body OB 
may correspond to different proba- 
bilities q1 = v1 and q2 = v2 to observe 

either spin value. 
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State representations 

The state S  A set in state space S where the elements are hypothetical 
   states Z of complete knowledge about the world 
 
A state representation S A symbolic or algebraic encoding of the knowledge 
   contained in the state S. 
 
S ↪ S    S is a complete representation of S; it represents all 
   knowledge contained in S. 
 
S ⇁ S   S is a partial representation of S; it represents some 
   knowledge of interest contained in S. 

–  

–  –  

–  –  



Representations of object states SOO with alternatives 

{SOj} is a complete set 
of future alternatives 

𝑆𝑂 ≡
𝑆𝑂1 𝑆𝑂2

𝑣1 𝑣2
↪ 𝑆𝑂𝑂 

𝑢𝑂1 𝑆𝑂𝑂 =
𝑢𝑂1𝑆𝑂1 𝑢𝑂1𝑆𝑂2

𝑣1 𝑣2
↪ 𝑢𝑂1 𝑆𝑂𝑂 

By the definition of a complete set 
of future alternatives, we have uO1vj = vj 
before one of them is realized.  

SO1 SO2 

SOO 

𝑣1 < 𝑣2 

(The representation is over-determined in the sense that vj is a function of SOj.) 



Proto-algebraic representation of SOO 

𝑆𝑂𝑂 ≡
𝑆𝑂1 𝑆𝑂2

𝑣1 𝑣2
 𝑆𝑂𝑂 = 𝑣1𝑆𝑂1 + 𝑣2𝑆𝑂2 ↔ 

𝑢𝑂1 𝑆𝑂𝑂 =
𝑢𝑂1𝑆𝑂1 𝑢𝑂1𝑆𝑂2

𝑣1 𝑣2
 ↔ 𝑢𝑂1𝑆𝑂𝑂 = 𝑣1𝑢𝑂1𝑆𝑂1 + 𝑣2𝑢𝑂1𝑆𝑂2 

The evolution operator uO1 becomes formally linear 

Formal notation without 
any predefined algebraic 

meaning attached to 
A+B and AB 



SO1 SO2 SO3 

SOO 

Property space P 

PO1 
~ PO2 

~ PO3 
~ 

SO21 

SOO 

Property space P’ 

PO1’ 
~ PO2’ 

~ 

SO22 

Proto-algebraic representation of successive observations 
of properties P and P’. 

Assume that P and P’ 
are simultaneously 
knowable 

(P, P’) is a combined property with four possible values (p1, p1’), (p2, p1’), (p2, p2’), (p3, p2’), 
and corresponding complete set of future alternatives  SO1, SO21, SO22, SO3. 

𝑆2 ≡
𝑆𝑂21 𝑆𝑂22

𝑣21 𝑣22
 𝑆𝑂 ≡

𝑆𝑂1 𝑆𝑂2 𝑆𝑂3

𝑣1 𝑣2 𝑣3
 𝑆𝑂 ≡

𝑆𝑂1 𝑆𝑂21

𝑣1 𝑣2𝑣21
    

𝑆𝑂22 𝑆𝑂3

𝑣2𝑣22 𝑣3
 

with vj = V[SOj]/V[SOO] and v2j = V[SO2j]/V[SO2] 



𝑆𝑂𝑂 = 𝑣1𝑆𝑂1 + 𝑣2𝑆𝑂2 + 𝑣3𝑆𝑂3 = 𝑣1𝑆𝑂1 + 𝑣2 𝑣21𝑆𝑂21 + 𝑣22𝑆𝑂22 + 𝑣3𝑆𝑂3 

= 𝑣1𝑆𝑂1 + 𝑣2𝑣21𝑆𝑂21 + 𝑣2𝑣22𝑆𝑂22 + 𝑣3𝑆𝑂3 

The distributive law holds 

Proto-algebraic representation of successive observations 
of properties P and P’. 

Bars on top of alternatives to 
open up for further division of them 

in a subsequent observation 



Algebraic representation of the contextual state SC 

Desiderata 
1) The numbers ai can be used to calculate the probability qi to have SC = SPi after the 
observation  of P, whenever qi exists: 
 
vi = f(ai),   (and qi = vi whenever qi exists) 
 
2) We may define a linear evolution operator uC that takes SC from the instant just 
after one observation to the instant before next: uCSC(n) = u1SC(n+m-1): 
 

𝑢𝐶𝑆𝐶 = 𝑢𝐶 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 = 𝑎1𝑢𝐶𝑆𝑃1 + 𝑎2𝑢𝐶𝑆𝑃2 

 
3) The distributive law holds for aj and SPj : 
 
a1(a2 + a3) SPj = (a1a2 + a1a3)SPj  
(a1 + a2) SPj = a1SPj + a2SPj  
 
4) The form of the representation is generally valid: it applies in all kinds of contexts, 
regardless the number of properties observed in succession and their knowability level, 
always respecting the principle of epistemic closure. 

𝑆𝐶 ≡
𝑆𝑃1 𝑆𝑃2

𝑎1 𝑎2
 𝑆𝐶 = 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 ↔ 

–  –  
–  –  –  



Algebraic representation of the contextual state SC 

Notes 
The numbers ai are not related to the relative volumes of the property 
value states Spi which describe the specimen OS, but via desiderata 1) to the 
relative volumes of the future alternatives Si of the entire (macroscopic) 
observational setup O, including the apparatus OA. 
 
The representation SC of SC is even more ”contextual” than SC itself, since 
it points explicitly via aj outwards from OS to the means OA by which we observe it. 
 
SC is a complete (over-determined) representation of SC, but just a partial 
representation of O. 
 
SC ↪ SC    
SC ⇁ SO 
 
This means that the states SO and SO’ of different contexts may have the same 
representation: SC ⇁ SO and SC ⇁ SO’. 

–  
–  

–  

–  

–  –  



Example: Mach-Zehnder contexts 

S2 

p1’ p2’ 

p1 
p2 

p1’ p2’ 

p1 
p2 

a) 

b) 

c) 

D1 D2 

D1’ D2’ 

D1 D2 

D1’ D2’ 

p1 
p2 

S11 S12 

S22 S21 

Property P: 
Which detector 
D1 or D2 will 
the photon hit? 

Property P’: 
Which detector 
D1’ or D2’ will 
the photon hit? 

One property P 
observed within 
context.  

Two properties P 
and P’ observed 
within context. 

S1’ S2’ 

Two properties P 
and P’ ’observed’ 
in context, but the 
value pj of P outside 
potential knowledge 
(knowability level 1) 

p1’ p2’ 

S1 

S2 



Algebraic representation of Mach-Zehnder contexts 

P and P’ at knowability level 3 (case b) 

𝑆𝐶(𝑛) = 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 

𝑆𝐶 𝑛 + 𝑚 = 𝑆𝑃1 

𝑆𝐶 𝑛 + 𝑚′ = 𝑆𝑃𝑃′12 

𝑢𝐶𝑆𝐶 𝑛 + 𝑚 = 𝑆𝑃1 = 𝑎11𝑆𝑃𝑃′11 + 𝑎12𝑆𝑃𝑃′12 

S0 

SC 

S1 

SC = SP1 

P 

P’ 

SC = SP1    SP’2 
 

S12 

n 

n + m 

n + m’ 

Time 

𝑢𝐶𝑆𝐶(𝑛) = 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 



S0 

SC 

S0 

SC 

S’2 

P and P’ at knowability levels 1 and 3, respectively (case c) 

𝑆𝐶(𝑛 + 𝑚) = 𝑎1𝑆𝐶1(𝑛 + 𝑚) + 𝑎2𝑆𝐶2(𝑛 + 𝑚) 

𝑢𝐶𝑆𝐶𝑖 𝑛 + 𝑚 = 𝑎𝑖1𝑆𝑃′1 + 𝑎𝑖2𝑆𝑃′2 

= (𝑎1𝑎11 + 𝑎2𝑎21)𝑆𝑃′1 + (𝑎1𝑎12 + 𝑎2𝑎22)𝑆𝑃′2 

𝑆𝐶 𝑛 + 𝑚′ = 𝑆𝑃′2 

Algebraic representation of Mach-Zehnder contexts 

P 

P’ 

n 

n + m 

n + m’ 

Time 

SC = SP’2 

𝑆𝐶(𝑛) = 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 

𝑆𝐶𝑖 𝑛 + 𝑚 = 𝑆𝑃𝑖 

𝑢𝐶𝑆𝐶 𝑛 + 𝑚 = 𝑎1𝑢𝐶𝑆𝐶1 𝑛 + 𝑚 + 𝑎2𝑢𝐶𝑆𝐶2(𝑛 + 𝑚) 

𝑢𝐶𝑆𝐶(𝑛) = 𝑎1𝑆𝑃1 + 𝑎2𝑆𝑃2 

Hypothetical contextual 
state if the property value p2 

were known 



1) The presence of the two alternatives associated with P in context c) should be 
reflected in the representation, like in the previous slide, since the knowledge that 
the photon must pass one of the two mirrors is part of the context 
(epistemic completeness). 
 
However, the representation should not be the same in context c) as in b), where we 
know which alternative is realized (explicit epistemic minimalism). In b) we get 
 
q(p’j) = q(p1)q(p’j|p1)+q(p2)q(p’j|p2) = v1 vj1+v2 vj2 = f(a1)f(a1j) + f(a2)f(a2j)  
 
In c) we get 
 
q(p’j) = v’j = f(a1a1j+ a2a2j) 
 
The expressions are different, as required, if and only if 
 
f(a) ≠ a 

Conditions on f(a) in the algebraic representation of SC 



Conditions on f(a) in the algebraic representation of SC 

2) The relative volumes of any partition of a state add to one. Therefore 
 
1 = 𝑓 𝑎1 + 𝑓(𝑎2)

1 = 𝑓 𝑎11 + 𝑓(𝑎12)

1 = 𝑓 𝑎21 + 𝑓(𝑎22)

 

1 = 𝑓 𝑎1𝑎11 + 𝑎2𝑎21 + 𝑓(𝑎1𝑎12 + 𝑎2𝑎22) 
 
3) In context b) we may see (P, P’) as one combined property with four possible 
values (p1, p1’), (p1, p2’), (p2, p1’), (p2, p2’), finally determined at time n + m’. 
Then we should write 
 

𝑢𝐶𝑆𝐶 𝑛 + 𝑚 = 𝑎1𝑎11𝑆𝑃𝑃′11 + 𝑎1𝑎12𝑆𝑃𝑃′12 +𝑎2 𝑎21𝑆𝑃𝑃′21 + 𝑎2𝑎22𝑆𝑃𝑃′22 
 
so that 
 
f(aiaij)=f(ai)f(aij). 



4) Property independence. The set of numbers {aj} reflects the arrangement of 
the part of the observational context that makes it possible to observe P, and 
the set {aij} reflects the part with which P’ is observed. These parts can be 
arranged independently, so that it should be possible to choose {aij} 
independently from {aj}.  The choice of  f(a) should make this possible. 
 
5) Experimental freedom. If  there are M possible values for P and N possible 
values for P’, then there are M – 1 independent relative volumes vi and M(N – 1) 
independent relative volumes vij, given the normalisations 1 =  𝑣𝑖𝑖  and 1 =
 𝑣𝑖𝑗𝑖 . These degrees of freedom reflect a freedom to choose experimental 

setup and there should therefore be at least equally many independent 
numbers ai  and aij if the representation is to fulfil Desiderata 4). The choice of  
f(a) should make this possible. 

Conditions on f(a) in the algebraic representation of SC 



Born’s rule 

f(a) ≠ a 
 
Experimental 
freedom 
 

Desiderata on the 
algebraic representation 

Conditions on f(a) 

complex a  f(a) = |a|2 

See the manuscript A strict epistemic approach to physics for details 



Inner products 

1 = 𝑓 𝑎1𝑎11 + 𝑎2𝑎21 + 𝑓(𝑎1𝑎12 + 𝑎2𝑎22) 
1 = 𝑎1𝑎11 + 𝑎2𝑎21

2 + 𝑎1𝑎12 + 𝑎2𝑎22
2 

 
 
 

0 = 𝑎1𝑎2
∗ 𝑎11

∗𝑎21 + 𝑎12
∗𝑎22  

 
 
 

0 = 𝑎11
∗𝑎21 + 𝑎12

∗𝑎22 

0 = 𝑎11𝑆𝑃´1 + 𝑎12𝑆𝑃´2, 𝑎21𝑆𝑃´1 + 𝑎22𝑆𝑃´2

= 𝑢𝐶𝑆𝐶1, 𝑢𝐶𝑆𝐶2

 

Define formally:   𝛿𝑖𝑗 = 𝑆𝑃𝑖 , 𝑆𝑃𝑗  

Property independence 

Generally:   𝛿𝑖𝑗 = 𝑢𝐶𝑆𝐶𝑖 , 𝑢𝐶𝑆𝐶𝑗  



Three representations of the observational context C 

The Hilbert space representation 
is possible thanks to  the possibility 
to define inner products and ortho- 
normality relations, as shown above. 
 
Born’s rule can then be expressed as 
 

𝑞(𝑝𝑗′) = 𝑢𝐶𝑆𝐶(𝑛 + 𝑚), 𝑆𝑃′𝑗  

𝑢𝐶𝑆𝐶𝑖 𝑛 + 𝑚 = 𝑎𝑖1𝑆𝑃′1 + 𝑎𝑖2𝑆𝑃′2 

𝑆𝐶𝑖 𝑛 + 𝑚 = 𝑆𝑃𝑖 

𝑎𝑖𝑗 = 𝑆𝑃𝑖 , 𝑆𝑃′𝑗  

𝑆𝑃𝑖 = 𝑎𝑖1𝑆𝑃′1 + 𝑎𝑖2𝑆𝑃′2 



Hilbert space representations in different kinds of contexts 

The Hilbert space representation was seen to be almost unavoidable 
in the case where two properties P and P’ are observed in sequence, 
and the values of P are unknowable (knowability level 1). 
 
 
Let us consider two other cases: 
 
 
P and P’ are simultaneously knowable, and both have knowability level 3. 
 
P and P’ are not simultaneously knowable, and both have knowability level 3. 

Let us see whether the same notions of orthonormal bases of property value states, 
of projections and Born’s rule, can be applied in these cases also, so that the 
Hilbert space representation becomes general valid in all observational contexts C. 



Mutually exclusive states are represented by orthonormal subspaces in HC . 
 
 Examples: Two property values states SPj and SPj’, and two hypothetical 
 contextual states SCi  and SCi’  (applying just after the distinct but unknowable 
 events that the value of P at knowability level 1 turns out to be pj and pj’). 

The dimension DH of HC is chosen epistemically as follows: 
 
DH = the maximum number of independent property values known at the same 
time during the observational context C. 
 
 Example: In the Mach-Zehnder context in which P and P’ are observed 
 and P has knowablity level 1, we get DH = 2 = the number of possible 
 values of P’ 

Principles to uphold in Hilbert space representations 
of observational contexts 



Hilbert space representation when P and P’ are 
simultaneously knowable 

Suppose that P and P’ 
have M and M’ possible 
values, respectively. 
 
When P has knowability 
level 1. We got DH = M’. 
 
Here P has knowability 
level 3. We get DH = MM’. 

In this example, 
M = 2 and M’ = 3, 
so that DH = 6. 

The property value spaces 
SPi of P and SP’j of P’ get 
dimensions 3 and 2, 
respectively 



Hilbert space representation when P and P’ are 
not simultaneously knowable 

No problem to represent the 
combined property space PP’ 
as a Hilbert space HPP’, particularly 
when P and P’ has just two allowed 
property values each (M = M’ = 2), 
like the spin sx of an electron. 
 
Two values knowable at the same time 
implies DH = 2. 
 
The definition of state space measure 
V implies v12 = v21 and v11 = v22. 
 
To conform formally with Born’s rule, 
we require 

𝛿𝑖𝑗 = 𝑃𝑖 , 𝑃𝑗  

𝛿𝑖𝑗 = 𝑃𝑖′, 𝑃𝑗′  

2𝑣𝑖𝑗
(𝑃)𝑒𝑖𝜃𝑖𝑗 = 𝑃𝑖 , 𝑃𝑗′  



Hilbert space representation when P and P’ are 
not simultaneously knowable 

The above construction is abstract. It does not relate to any actual observational context C; 
There is no contextual state vector 𝑆 

𝐶  defined in HPP’. 

The abstract construction can be applied 
to C when it is possible to choose bases 
𝑆 

𝑃1, 𝑆 
𝑃2  and 𝑆 

𝑃1′, 𝑆 
𝑃2′  with the same 

mutual relation as that between 𝑃 1, 𝑃 2   
and 𝑃 1′, 𝑃 2′ . 
 
This is possible in neutral contexts C, 
which does not color this relation,  
where 
 
VA/VB = VA

(P)/VB
(P) 

 
or 
 

𝑣𝑖𝑗 = 𝑃𝑖 , 𝑃𝑗′
2

 

 



In that case we may formally set 
 
HC = HPP’ 

𝑆 
𝑃𝑖 = 𝑃 𝑖 

𝑆 
𝑃′𝑗 = 𝑃 𝑗′ 

 
However, the two bases 
𝑆 

𝑃1, 𝑆 
𝑃2  and 𝑆 

𝑃′1, 𝑆 
𝑃′2  

associated with P and P’ 
are not on equal footing in HC 
since P is observed first, 
then P’. 
 
We can symmetrize the situation 
if we consider a reverse context 
𝐶  in conjunction with C. 

Hilbert space representation when P and P’ are 
not simultaneously knowable 



Change of basis in Hilbert space 

To the original context C is associated 
a Hilbert space 𝐻𝐶  with a contextual 
state vector 𝑆 

𝐶 . 
 
To the reciprocal context 𝐶  is associ- 
ated a reciprocal Hilbert space 𝐻𝐶  with 
a reverse contextual state vector 𝑆 

𝐶 . 
 
If 𝑎 𝑖 = 𝑎1𝑎1𝑖 + 𝑎2𝑎2𝑖 and 𝐴 = 𝐴−1 with 

𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22
 

then we call 𝐶  the reverse context to C 
and denote it 𝐶 . 
 
In that case we can consider C and 𝐶  
together in a combined Hilbert space 
𝐻𝐶𝐶  and identify 𝑆 

𝐶 = 𝑆 
𝐶 . 

 
Then the two bases 𝑆 

𝑃1, 𝑆 
𝑃2  and 𝑆 

𝑃′1, 𝑆 
𝑃′2  

are finally on equal footing and we can change 
bases in 𝐻𝐶𝐶  as usual. 



Examples of Hilbert space representation when P and P’ are 
not simultaneously knowable 

a) Mutually defined property pairs, 
like the angular momentum along 
two directions z and z’ with an angle 
f between them. We have vij = vji 

for all ij. 

b) Independent property pairs without 
any inherent relation that makes it more 
probable to observe a particular value of 
P’ given the value of P. An example is 
position x and momentum px. We have 
vij = vkl for all ij and kl. 



Hilbert space context representations 

– a summary 

Consider the set SC of observational contexts C with a given specimen OS, a given 
sequence P, P’, … of observed properties with given knowability levels, and given 
sets of possible values {pj}, {pj’}, … of these proeprties. To most such sets  
SC we can associate a complex vector space HC. 

Contexts with a pair of properties (P, P’) where P has knowability level 1 
And P’ has knowability level 3 more or less forced a complex vector space 
representation upon us, where the probabilities to observe different values 
of P are given by Born’s law. 
 
Such a representation was seen to be possible also  when both P and P’ 
has knowability level 3, regardless whether they are simultaneously 
knowable or not. 
 
Trivially, the same kind of representation is possible also if we consider 
contexts with just one observed property P, and contexts with more 
than two observed properties, by combining simpler contexts. 



Properties and operators 

We considered the formal Hilbert space HPP’ above, discussing observational 
contexts C with two properties P and P’ which are not simultaneously knowable.  
 
In general, to each property P we may associate a Hilbert space 𝐻𝑃. 
The property value spaces Pj correspond to vectors 𝑃 𝑗 which span 𝐻𝑃and are such that 

𝛿𝑖𝑗 = 𝑃𝑖 , 𝑃𝑗 . 

 
In this language, we may write 
 

𝑃 ↔  

𝐻𝑃

𝑃 𝑗 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑏𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝐻𝑃

𝑝𝑗 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑃

 

 
 
This means that we can associate each property P with exactly one linear, self-adjoint 

operator 𝑃  with domain 𝐻𝑃 , with complete basis of eigenvectors 𝑃 𝑗 , and with 

corresponding real eigenvalues 𝑝𝑗 .  



Properties and operators 

If some value 𝑝3 cannot be observed within context, 
the dimension of HC decreases from 3 to 2, and 
𝑃 𝑆 

𝐶 = 𝑎1𝑝1𝑆 
𝑃1 + 𝑎2𝑝2𝑆 

𝑃2 

If the values 𝑝2 and 𝑝3 cannot be resolved, we define 
contextual property values 𝑝𝐶1 = 𝑝1, 𝑝𝐶2 = 𝑝1, 𝑝2  
and write 𝑃 𝐶𝑆 

𝐶 = 𝑎1𝑝𝐶1𝑆 
𝑃1 + 𝑎2𝑝𝐶2𝑆 

𝑃2 for the ope- 
rator 𝑃𝐶  corresponding to contextual property 𝑃𝐶 . 

Above we related the abstract space HPP’ with the 
space HC that describes a concrete observational 
context C by the formal identification  𝑆 

𝑃𝑖 = 𝑃 𝑖 . 
 
Here, we can transfer the domain of 𝑃  from HP to 
HC by saying 𝑆𝐶 ⊆ Pi ⇒ 𝑃 𝑆 

𝐶 = 𝑝𝑖𝑆 
𝐶 . 

The linearity of 𝑃  is then expressed by the rule 
 

𝑃 𝑆 
𝐶 = 𝑃 𝑎1𝑆 

𝑃1 + 𝑎2𝑆 
𝑃2 + 𝑎3𝑆 

𝑃3

= 𝑎1𝑃 𝑆 
𝑃1 + 𝑎2𝑃 𝑆 

𝑃2 + 𝑎3𝑃 𝑆 
𝑃3

= 𝑎1𝑝1𝑆 
𝑃1 + 𝑎2𝑝2𝑆 

𝑃2 + 𝑎3𝑝3𝑆 
𝑃3

 



Properties and operators 
We have seen that to each property P we can associate exactly one self-adjoint operator 𝑃 . 
Conversely, to each such operator we can associate a property in the following sense. 

Consider a context C 
In which P is observed 

C can be represented 
by a Hilbert space HC.  

In such a Hilbert space 
we can introduce another 

basis 𝑣 𝑗 . Choose real 

numbers 𝜖𝑗 . We have 

then defined a self-adjoint 
operator 𝑃 ′.  

We can partition state 
space into disjoint sub- 
spaces Pj’ so that 

𝑣𝑖𝑗 = 𝑃𝑖 , 𝑣𝑗′
2

. To Pj’  

we can associate value 𝜖𝑗. 

This defines a property P’. 

v12 

v12 

We can define a neutral 
context C’ where P’ is 
observed after P. 

In HC’, 𝑣 𝑗  and 𝜖𝑗  are 

the eigenvectors and 
–values of the operator 
corresponding to P’.   



Commutation rules for property operators 

This is a consequence of the epistemic rule that the dimension DH 
of the Hilbert space HC is the maximum number of independent 
property values known at the same time during the observational 
context C. 
 
Suppose that P and P’ are not simultaneously knowable and have 
M possible values each. Then DH = M.  
 
If we were allowed to choose DH = M2 in this case, then we would 
have been able to deduce 𝑃 , 𝑃 ′ ≡ 0 if we let 𝑃  and 𝑃 ′ act on the 
basis vectors 𝑆 

𝑖𝑗 that correspond to the unattainable state of 

knowledge that P has value pi and P’ has value pj’.
 

We have 𝑃 , 𝑃 ′ ≡ 0 if and only if properties P and P’ are simultaneously knowable. 


