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A real-space renormalization transformation is constructed for lattices of nonidentical oscillators with dy-
namics of the general form d�k /dt=�k+g�l f lk��l ,�k�. The transformation acts on ensembles of such lattices.
Critical properties corresponding to a second-order phase transition toward macroscopic synchronization are
deduced. The analysis is potentially exact but relies in part on unproven assumptions. Numerically, second-
order phase transitions with the predicted properties are observed as g increases in two structurally different
two-dimensional oscillator models. One model has smooth coupling f lk��l ,�k�=���l−�k�, where ��x� is
nonodd. The other model is pulse coupled, with f lk��l ,�k�=���l����k�. Lower bounds for the critical dimen-
sions for different types of coupling are obtained. For nonodd coupling, macroscopic synchronization cannot
be ruled out for any dimension D�1, whereas in the case of odd coupling, the well-known result that it can be
ruled out for D�3 is regained.
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I. INTRODUCTION

The study of synchronization in large oscillator networks
has been a thriving field of research ever since the classic
work by Winfree �1� in 1967. Even so, there are still basic
questions that await satisfactory answers. One such question
is when and how macroscopic synchronization occurs in lat-
tices of nonidentical oscillators. This is the subject of the
present paper.

Part of the charm of the study of synchronization is that
the applications are very diverse �2–4�. Rhythmic activities
in living organisms are, in many cases, generated by the
collective oscillation of a large synchronized assembly of
pacemaker cells. Examples include the beating of the heart
�5�, locomotion �6�, the circadian rhythm �7�, and the peri-
staltis of the small intestine �8�. There is also growing evi-
dence that large-scale synchronization among neurons is cru-
cial in the interpretation of sensory data and in conscious
perception �9�. Epileptic seizures correspond to an abnormal
degree of synchronization �10�. On a larger scale, synchroni-
zation can be seen in groups of organisms. Swarms of fire-
flies may flash in unison �11�, the chirping of crickets in a
field waxes and wanes in partial synchrony �12�, an audience
may spontaneously start to clap in unison �13�, and females
living together synchronize their menstrual cycles �14�. It has
also been realized that synchronization is an essential con-
cept in the dynamics of spatially extended animal popula-
tions �15�. Examples from outside biology include synchro-
nization in power grids �4�, lasers �16�, oscillatory chemical
reactions �17�, and arrays of Josephson junctions �18�.

In most applications, there will inevitably be some varia-
tion among the oscillators, for instance in the natural fre-
quency with which they oscillate when isolated. In this situ-
ation, macroscopic synchronization means that the order
parameter r becomes nonzero, where

r = lim
N→�

M/N . �1�

Here, M is the size of the largest group of oscillators that
attain the same mean frequency and N is the total number of
oscillators. If the network has spatial structure, the M syn-

chronized oscillators typically form a percolating cluster
�19,20�. The mean frequency �k of oscillator k is defined as

�k = lim
t→�

�k�t�/t , �2�

where �k is the phase of k. The existence of the above limits
has to be assumed �21�.

In theoretical work, the description of each oscillator must
be simple to enable the study of large networks. Kuramoto
�22� introduced the so-called phase reduction technique and
showed that in the limits of small coupling between oscilla-
tors and small variation in natural frequencies, the phase �k
is sufficient to describe the state of each oscillator k, and the
network dynamics is given by

d�k

dt
= �k + g�

l=1

N

�lk��l − �k� . �3�

The constant �k is the natural frequency, g is the coupling
strength, and �lk�x� is a one-periodic function. Another situ-
ation where a phase description is sufficient is in the limits of
short, pulselike interactions and strong dissipation. The quick
reduction in phase-space volumes then ensures that after one
perturbation from a nearby oscillator l, oscillator k returns
close to its limit cycle before the next perturbation, and we
may write

d�k

dt
= �k + g�

l=1

N

��mod��l,1���lk��k� , �4�

where ��x� is the Dirac delta function. This is often a good
description in biological applications, where the interactions,
for instance, may consist of electric discharges or light
flashes. If we define �k as a cyclic variable, �k� �0,1�, we
can replace ��mod��l ,1��, with ���l�. The one-periodic
function �lk�x� is often called the phase response curve.

Transitions to macroscopic synchronization are similar to
phase transitions in equilibrium systems. The two main
methods to analyze phase transitions are to make a mean-
field description or to use a renormalization group. So far,
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most attempts to gain understanding of macroscopic syn-
chronization among nonidentical oscillators have assumed
that the oscillators are coupled all-to-all. This is the mean-
field description. To use a renormalization group, on the
other hand, is the natural way to gain understanding of phase
transitions in lattices.

This is the method used in this study. A real-space renor-
malization scheme is developed that is potentially exact. It is
tested numerically on two structurally different models. At
its present stage of development, however, the scheme has to
be called heuristic since it relies in part on unproven assump-
tions.

Before describing the approach, let me review very briefly
the current state of knowledge about transitions to macro-
scopic synchronization in mean-field and lattice models.

II. REVIEW OF RELATED WORK

A. Mean-field models

As a special case of Eq. �3�, Kuramoto �22� introduced the
mean-field model

d�k

dt
= �k +

g

N
�
l=1

N

sin�2	��l − �k�� �5�

because of its analytical tractability. Instead of r, Kuramoto
�22� studied the order parameter

R = lim
t→�

lim
N→�
��

k=1

N

e2	i�k�t�� , �6�

and found that there is a critical coupling strength gc such
that

R = 0, g � gc,

R 
 �g − gc�1/2, g � gc. �7�

If each �k is chosen independently from a density function
D� that is unimodal and symmetric about its mean �, the
critical coupling is given by gc=2 /	D����.

Since the original work by Kuramoto �22�, the analysis
of model �5� has been refined �23�. Also, it turns out that
the exponent 1/2 in Eq. �7� changes to 1 as soon as non-
odd harmonics are added to the coupling function �lk�x�
=sin�2	x� �24�.

Note that the order parameter R measures the degree of
phase synchronization, whereas r �Eq. �1�� measures the de-
gree of frequency synchronization. A nonzero R implies a
nonzero r, but the opposite is not true. In a mean-field model,
r and R typically becomes nonzero at the same critical cou-
pling gc. In a lattice model, waves in the phase field may be
expected �1–4,22,25,26� even if the frequencies are synchro-
nized so that r�0 but R=0.

Ariaratnam and Strogatz �27� studied Winfree’s original
model,

d�k

dt
= �k +

g

N
�
l=1

N

��l����k� , �8�

in the special case �x�=1+cos�2	x� and ��x�=−sin�2	x�.
This model is similar to model �4�, with the smooth one-
periodic influence function �x� replacing the delta pulse.
The authors were able to obtain the phase diagram in the
plane spanned by g and �, where D� is uniform with support
�1−� ,1+��. Apart from the phases with r=R=0 and r=R
=1, there is a phase of partial synchrony with r�1 and R
�1 and also phases with partial or complete oscillator death
�d�k /dt=0�.

Tsubo et al. �28� studied a similar model, but let the dis-
order reside in the phase response curves �lk�x�, whereas the
natural frequencies were identical. With �lk�x�=cos�	ak�
−cos�2	x−	ak�, where ak is a random number from a uni-
form distribution with support �amin,amax�, they found a dis-
continuous transition to macroscopic synchronization in the
phase plane spanned by amin and amax, in contrast to the
continuous transition in the Kuramoto model, as expressed in
Eq. �7�.

B. Lattice models

The analysis of oscillator lattices is harder than that of
mean-field models, and less progress has been made. For
cubic lattices with dimension D and dynamics of form �3�
with �lk�x�=��x� and odd coupling, ��−x��−��x�, Daido
�29� ruled out states with r�0 for D�2. Daido obtained this
result using renormalizationlike arguments. With similar
methods, Strogatz and Mirollo �30� were able to prove that
whenever D� has nonzero variance, states with r=1 are ruled
out for any finite D. In addition, states with 0�r�1 cannot
have synchronized clusters which contain macroscopic cubes
�with volume V=aN, where 0�a�1�. Thus, for odd cou-
pling, macroscopic synchronization may occur only if D
�3 and can only be partial with spongelike synchronized
clusters. Whether such states actually exist is still an open
question. The numerical evidence is inconclusive in my view
�19,29,31,32�.

Kopell and Ermentrout �33� were the first to point out that
non-odd coupling facilitates synchronization. For an oscilla-
tor chain �D=1� of form �3� with �lk�x�=��x�, I studied the
case when D� has finite support ��min,�max�. For models
with ��0�=0 and ���0��0, there is then a critical coupling
gc at which a discontinuous transition from r=0 to r=1 takes
place �34�. I found that gc= ��max−�min� / �d�x̂��, where the
denominator �d�x̂�� is a measure of the “nonoddity” of ��x�,
vanishing for odd coupling such as ��x�=sin�2	x�. A similar
result was provided for a model of form �4�, which can be
seen as inherently nonodd due to the sequential interaction of
two oscillators via pulses �35�.

Since macroscopic synchronization is possible for D=1
for nonodd coupling, it is expected to be possible for all D
�1. However, no proofs have been obtained, to my best
knowledge. For D=2, me and my co-workers �20� offered
numerical evidence for a continuous, second-order phase
transition to r�0 in a model of form �4�.
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In equilibrium systems, there is typically an upper critical
dimension, above which a lattice model shows mean-field
critical behavior. Hong and co-workers �32� have re-
examined the lattice version of the Kuramoto model �Eq. �5��
and claim that D=4 is the upper critical dimension, above
which critical exponents take mean-field values and macro-
scopic frequency and phase synchronizations appear at the
same critical coupling. However, the results by Strogatz and
Mirollo �30� indicate that the upper critical dimension is in-
finity for this model since they ruled out states with r=1 for
any finite D and any D� with nonzero variance, whereas
such states exist in the mean-field model �Eq. �5�� when D�

has nonzero variance but finite support. It is conceivable that
the phase-transition structure of oscillator networks is richer
than in equilibrium systems and cannot be fully captured by
the concepts used there.

Lattice models of oscillator networks are closely related
to spatial continuum models. This is the natural way to de-
scribe the oscillatory Belousov-Zhabotinsky reaction �36�
and the smooth muscle tissue in the intestine �8�. It may also
be an adequate model of a large piece of oscillatory cardiac
muscle even though it consists of discrete cells. The prefer-
able mathematical description is given by the Ginzburg-
Landau equation �GLE� �3,22�, where the state at each point
in space is given by a complex number, encoding both the
phase and amplitude of oscillation. The GLE corresponds to
a lattice of identical oscillators. Using a field-theoretic renor-
malization group, Risler and co-workers �37� performed a
thorough analysis of synchronization transitions in the GLE
with noise. The noise is assumed to be uncorrelated in space
and time. In contrast, random natural frequencies correspond
to “noise” that is uncorrelated in space but quenched in time.
This makes the problem much more difficult in the con-
tinuum formulation. In particular, discontinuities arise in the
phase field whenever frequency synchronization is not per-
fect �r�1�.

III. MODELS AND METHODS

In the analysis, models of the following form are consid-
ered:

d�k

dt
= �k + g �

l�nk

f lk��l,�k�, k = 1, . . . ,N . �9�

Here, �k�R is the phase of oscillator k, �k is its natural
frequency, g is the coupling strength, and nk is the set of k’s
nearest neighbors. The analysis is restricted to cubic lattices
of dimension D. The coupling functions f lk are assumed to be
one-periodic in each argument. With this restriction, the
phases �k are allowed to grow linearly to be able to count the
number of cycles, that is, the largest integer smaller than
�k�t�−�k�0�. Since no further assumptions are made, the re-
sults are expected to apply �at least� to all models of this
form. All the coupling functions in the models referred to
above have the form given in Eq. �9�.

Let us define the ensemble

E = E�g,D�,D f,D��0�,D,N� �10�

of realizations of system �9�, where �k are independent
random numbers from the density function D�, each f lk
is chosen from D f, and the initial condition ��0�
= ��1�0� , . . . ,�N�0�� is chosen from D��0�. Quenched disor-
der is introduced by D� and D f.

To give the coupling strength g a clear meaning, D f
should be chosen so that

	

0

1 

0

1

�f lk��l,�k��d�ld�k�
D f

= 1 �11�

or so that it fulfils a similar condition. Alternatively, one may
drop g as an argument of E.

To test the theoretical predictions, numerical simulations
of two specific models with D=2 are performed. The first
model has form �3� with

�lk�x� = sin�2	x� +
1

4
sin2�2	x� �12�

�Fig. 1�. This model will be referred to as model 1. The
density function D� is uniform with support �1.0, 1.5� and
D��0� is uniform in the interval �0, 1�. Forward Euler inte-
gration is used, with �t=0.05. The motivation for this model
is that it is similar to the Kuramoto model but has a nonodd
term to allow macroscopic synchronization for D=2 �see be-
low�.

The second model has form �4� with

�lk�x� = �− x , x � 0.4

9x − 4, 0.4 � x � 0.5

1 − x , 0.5 � x � 1
 �13�

�Fig. 1�. This model will be referred to as model 2. D�−1 is
uniform with support �1.0, 1.5� and D��0� is uniform in the
interval �0, 1�. The same integration method as in Refs.
�20,34� is used. The piecewise linear phase response curve
expressed by Eq. �13� has the same bipolar characteristics as
the curve ��x�=−sin�2	x� used by Ariaratnam and Strogatz
�27�. This type of response to external perturbation is found
in many biological applications �2�.

The details are arbitrary, but these models are chosen
since they have been studied previously, model �12� for D
=1 in Ref. �34� and model �13� for D=1 in Ref. �35� and in
the case D=2 in Refs. �20,25�.

FIG. 1. Coupling functions in the two test models. Model 1 is of
form �3� with �lk�x� given by Eq. �12�. Model 2 has form �4� with
�lk�x� given by Eq. �13�
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Unless otherwise stated, simulations of model 1 are car-
ried out with lattice size 300�300, whereas for model 2
the lattice size 500�500 is used. The larger lattice size
is needed to resolve phase 2 in model 2 �see below�. Peri-
odic boundary conditions are used, unless otherwise
stated. In and around critical regions, a transient time of
t=100 000–200 000 is used before measurements are done.
For g well below critical values, shorter transient times are
used. Mean frequencies �k are approximated by taking the
mean of d�k /dt during a time interval �t=1000 after the
initial transient �21�.

To identify frequency clusters, the lattice is scanned. An
oscillator k is considered to belong to the same cluster as a
previously scanned neighbor oscillator l if ��l−�k��0.001.
If two such neighbor oscillators l and l� are preliminarily
judged to belong to different clusters C and C�, but both
fulfill the above inequality, C and C� are identified as two
parts of the same cluster.

IV. THEORETICAL APPROACH

The first step in the renormalization scheme is to define a
block-oscillator transformation pb :Rbd+1→R2 �Fig. 2�,

��̃ j�t��,t�� = pb���k�t��k�j,t� . �14�

We get a coarse-grained version of the lattice and interpret
the phase �̃ j as the state of block oscillator j. Applying pb
to all j, we may define the scale transformation Pb :RN+1

→RN/bD+1 as

��̃�t��,t�� = Pb���t�,t� , �15�

with �= ��1 , . . . ,�N� and �̃= ��̃1 , . . . , �̃N/bD�.
Let us discuss these transformations in a bit more detail.

To be able to interpret Pb as a scale transformation, note that
it must fulfill the group property

Pb1
Pb2

= Pb1b2
. �16�

Regarding pb, I restrict the interest to linear transformations
of the form

��̃ j

t�
� = M�b,D��

�k1

]

�kbD

t
� , �17�

where �k1
, . . . ,�kbD is some list of the phases in block j, and

M�b ,D� is a 2� �bD+1� matrix with

M�b,D� = �A . . . A B

0 . . . 0 C
� .

�Here, A, B, and C are functions of b and D.� Linear trans-
formations with M1,1= ¯ =M1,bD =A are considered since �̃ j

is intended to be a kind of arithmetic mean of the phases �k
in block j, where all �k are treated in the same way. Such a
choice of �̃ j is justified if the phases are interpreted to be
linear variables, instead of cyclic ones. There is no reason to
let the transformed time t� depend on the phases, and there-
fore I set M2,1= ¯ =M2,bD =0.

Next, let �H���t���E be the ensemble mean of H���t��,
where H is a functional of the time series ��t�. We then seek
an ensemble

E� = E�g�,D f�,D��,D���0�,D,N/bD� �18�

�cf. Eq. �10�� such that

�H����t����E� = �H��̃�t����E �19�

for any functional H. In words, all statistical quantities pro-
duced by the desired ensemble E� should be the same as
those given by the transformed phases ��̃�t���, which in turn
are determined by E. The relation

E� = RbE �20�

defines the renormalization transformation Rb, assuming that
E� exists �Fig. 3�.

Naively, instead of working at the ensemble level, we
could have looked for an evolution equation for the trans-
formed phases �̃. If we would have been successful, we
could have written d�̃ j /dt�=� j�+g��i�nj

f ij� ��̃i , �̃ j� or, in

compressed form, d�̃ j /dt�=� j�+h���̃�. However, since pb is
not invertible, we have to express the interaction in the origi-
nal phases, i.e., h�=h����, and we do not get an evolution
equation of the transformed phases in closed form such as
Eq. �9�.

FIG. 2. A block-oscillator transformation Eq. �14� with scale
factor b=2 and implicit change in length scale r�=r /b.

FIG. 3. Relation between the renormalization transformation Rb

and the block-oscillator transformation pb. An ensemble E produces
an infinite set ���t�� of time series ��t�. Only if such a set ���t��
inversely determines E �dashed vertical arrows�, is E� uniquely de-
termined by ��̃�t���. Thus Rb does only exist in this case.
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Let us write

d�k/dt = �k + hk���

d�k�/dt� = �k� + hk����� �21�

for the original and transformed ensembles E and E�, respec-
tively. In the following, I also adopt the notation E�x�= �x�E
and let var�x� and cov�x ,y� be the ensemble variance and
covariance, respectively.

To be able to extract information about critical behavior
from Rb, the transformation pb has to be chosen so that there
may appear a nontrivial fixed-point ensemble

E� = RbE� �22�

in the limit N→� �Fig. 4�. In this paper I look for, and
assume the existence of, a fixed point E� for which the vari-
ance of natural frequencies and the variance of the interac-
tion exist, that is

0 � ���
2 �� � �

0 � var��hk� � � . �23�

A finite var��hk� implies a finite fixed-point coupling strength
g� �38�.

Further, E� should attract an ensemble Egc1
belonging to a

family Eg that passes a transition to macroscopic synchroni-
zation at the critical coupling g=gc1. The behavior of Egc

will
then be the same as that of E� at large scales and after long
times.

With this in mind, pb is chosen to fulfill three conditions,
in addition to Eqs. �16� and �17�. Before stating these condi-
tions, let me introduce a few quantities.

First, let m�t� and m� be the mean attained frequencies:

m�t� = �d�k/dt�E,

m� = limt→� m�t� . �24�

The limit limt→� m�t� exists at the presumed fixed point E�

according to assumption �23�. In fact, it follows from Eqs.
�21� and �23� that the two first moments of the distribution of
attained mean frequencies �k exist at E� �21,39�:

E���k� = �m��� � � ,

0 � var���k� � � . �25�

Further, let � be the mean wave number. Since the phases
are allowed to be linear variables, the wave nature of the
phase landscape in a given lattice L may only be manifest if
a suitable integer qk is added or subtracted to each �k. Writ-
ing Q= �q1 , . . . ,qN� and ��Q�=�+Q, I define

� = lim
t→�

min����k
�Q� − �l�nk

�Q� ��L�Q. �26�

In other words, Q should be chosen so that the mean phase
difference between neighbor oscillators is minimized, and
this phase difference is �. The lattice mean �. . .�L is expected
to become equivalent to an ensemble mean �. . .�E in the limit
N→�. �Otherwise an ensemble mean can be added in the
definition.�

Let m̃ and �̃ be the corresponding mean frequency and
wave number in the transformed lattice. The three conditions
that guide the choice of pb, apart from Eqs. �16� and �17�, are
then as follows:

�1� There is a �nonempty� set of ensembles �1, such that
if E��1, then m̃�=m� for any b.

�2� There is a set of ensembles �2��1, such that if
E��2, then �̃=� for any b.

�3� There is a set of ensembles E with no coupling
�g=0� such that if ��

2 is finite and nonzero, then ���
2 =��̃

2

is finite and nonzero for any b.

It is clear that the two first conditions are necessary. The
critical fixed point E� I hope to construct belongs to �2.

To see why condition �3� is necessary, look at Fig. 4.
Assume first that the condition is broken and that
limb→� ���

2 =0 for all ensembles with no coupling. Then the
unstable manifold U of E� bends down to the origin. If Sc
would still be a stable manifold of E�, closed flow lines
would appear, which is impossible since correlation lengths
are always reduced a factor b each time Rb is applied. Thus
the flow along the critical line Sc changes direction, and the
critical properties at gc1 are no longer given by those of E�.
In other words, E� becomes irrelevant.

Assume instead that limb→� ���
2 =� at g=0 for all en-

sembles with no coupling. I will give a plausibility argu-
ment why this is not consistent with the existence of a fixed
point E� of the desired kind. From Eqs. �17� and �21�,

FIG. 4. Projection of �E� to the plane spanned by coupling
strength g and the variance ��

2 of natural frequencies. The transfor-
mation pb �Eq. �14�� is chosen so that a critical fixed point E� with
finite g� and ���

2 �� may appear. The flow under Rb is intended to be
such that ensembles on the critical line Sc are attracted to E�, and
that ��

2 is invariant at g=0. Numerically, two ensemble families Eg

are studied, models 1 and 2. Each of these seemingly becomes
critical at some coupling g=gc1.
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d�̃ j /dt�= �A /C��k�j�k+ �A /C��k�jhk+B /C. Since g=0 cor-
responds to hk�0, we have d�̃ j /dt�= ��̃ j�g=0+ �A /C��k�jhk.
Here, ��̃ j�g=0 is the transformed natural frequency of block j
in the ensemble obtained when g is replaced by 0 in the
original ensemble E�g , . . .�. Taking the ensemble variance
and applying the equation to the presumed fixed point
E��g� , . . .�, we may write var��d�̃ j /dt��= ����

2 �g=0+R, where I
do not specify the rest term R for clarity. The left-hand side
of this equation must be finite for any b since var�d�̃ j /dt��
=var�d�k /dt� at a fixed point and var��d�k /dt� exists �39�.
This condition would be hard to fulfill if ����

2 �g=0→� as
b→�. Then the term R must sensitively balance this diver-
gence.

Straightforward algebra shows that the only block-
oscillator transformation pb of form �17� that has the group
property Eq. �16� and satisfies conditions 1–3 is the one with

A = b−D−1,

B = �b−D/2−1 − b−1�m�,

C = b−D/2−1, �27�

or, explicitly,

��̃ j�t��
=b−D−1�

k�j

�k�t� − b−1�1 − b−D/2�m�t

t� =b−D/2−1t .
� �28�

�In fact, I only demonstrate that this transformation satisfies
condition 2 in a restricted sense, to be described below.�

Note that if we are interested in critical ensembles for
which ��

2 does not exist, the three conditions, and hence
transformation �28�, should be modified. This point was dis-
cussed by Daido �29�. This in turn affects the critical prop-
erties and the critical dimension. I do not deal with these
cases explicitly in this paper.

Instead of proving the uniqueness of transformation �28�,
let us examine to what extent it fulfills conditions 1–3.

Regarding condition 1, we get

m̃� = m� �29�

for any b and any E by direct evaluation of limt→��d�̃ j /dt��E
using Eq. �28�.

Condition 2 is fulfilled in the following restricted sense. If
we may choose Q �Eq. �26�� such that a plane wave moving
along a principal axis appears in the phase field ��Q��r�, then
its wave number will remain the same in the transformed
field �̃�Q��r��. Assume that i and j are two neighbor block-
oscillators along the relevant principal axis �Fig. 5�. Then,
dropping the superscript �Q� for brevity,

�̃ j − �̃i = b−D−1�
k=1

bD

��kj
− �ki

� , �30�

where ki and kj are the oscillators at corresponding positions
in block i and j, respectively. The distance between these is
b, and thus ��kj

−�ki
�L=b��l−�k�L, where k and l are neigh-

bor oscillators along the principal axis. Consequently, taking
the lattice mean of Eq. �30�, we get ��̃ j − �̃i�L= ��l−�k�L.

Turning to condition 3, let us use Eqs. �28� and �29� to
write

d�̃ j

dt�
− m̃� = b−D/2�

k�j
�d�k

dt
− m�� . �31�

At g=0 we have d�̃ j /dt�= �̃ j and d�k /dt=�k. Also, m̃�

=m�= �̃=� by Eq. �29� so that �̃ j − �̃=b−D/2�k�j��k−��.
Thus ��̃

2 =��
2 for all b. Condition 3 is then fulfilled since

D��=D�̃ at g=0. In the limit b→�, D�� becomes a Gauss-
ian by the central limit theorem, with the same mean and
variance as D�.

Transformation �28� is the only block-oscillator transfor-
mation of form �17� that enables a nontrivial fixed point E� of
the desired kind. There may be acceptable transformations
that do not have form �17�. This is not essential. Fixed-point
properties derived from any pb that gives rise to a fixed point
E� of the desired kind have to reflect critical properties of
model �9� if the corresponding family of ensembles Eg pass
through the critical surface Sc as coupling strength g is varied
�Fig. 4�.

To gain some information about Rb, let us try to express

d�̃ j/dt� = �̃ j + h̃j��� , �32�

where �̃ j is a constant that can be interpreted as the natural
frequency of block-oscillator j in the transformed lattice, and

h̃j��� can be seen as the interaction term. To allow such an

interpretation, h̃j��� has to be zero when block j is decou-
pled from the rest of the lattice. Let

mj = lim
t→�

b−D�
k�j

�d�k/dt��, �33�

where x� is the value of x when block-oscillator j is decou-
pled from the surroundings. Further, let an underlined vari-
able denote an initial condition mean,

x� = �x�D��0�
. �34�

FIG. 5. Illustration for the argument why condition 3 is fulfilled
for the block-oscillator transformation pb �Eq. �28��. A wave is
moving in the positive x direction in the case D=1. Two neighbor
block-oscillators i and j with size b=2 are indicated. Corresponding
individual oscillators in the two blocks are paired as ��1i

,�1 j
� and

��2i
,�2 j

�. The oscillators in each pair are placed at distance b=2
from each other.
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In a sense, m� j is then the natural frequency of block-
oscillator j in the original lattice. Using Eqs. �9� and �28�, we
may express

d�̃ j

dt�
= m� + bD/2�m� j − m��

+ b−D/2�
k�j

�g� �
l�nk

f lk��l,�k�� − �m� j − �k�� .

�35�

Let us interpret

�̃ j = m� + bD/2�m� j − m�� , �36�

and

h̃j��� = b−D/2�
k�j

�g� �
l�nk

f lk��l,�k�� − �m� j − �k��
= b−D/2�

k�j

g �
l�nk

�f lk��l,�k� − f�lk
��

= b−D/2�
k�j

�hk��� − h� k
�� . �37�

Here, f�lk
� is the initial condition mean of the coupling func-

tion f lk��l ,�k� as t→� and block j is decoupled, and h� k
�

=g�l�nk
f�lk

�. The interaction h̃j in Eq. �37� is not strictly zero
when j is decoupled from other blocks. However, the initial

condition mean h̃� j is zero, in the limit t→�. Thus, these
identifications can be used to deduce asymptotic critical be-
havior of initial condition averaged variables but nothing
else.

I formulate the following conjecture:

D�� = D�̃,

�H�h� k�������E� = �H�h�̃ j�����E �38�

for any functional H as t→�. A number of critical properties
follow from Eqs. �19�, �28�, and �38�, and the fixed point
condition E�=E=E�.

V. RESULTS

A. Phase diagrams

I want to compare each theoretical prediction with nu-
merical results from the two test models, model 1 �Eq. �12��
and model 2 �Eq. �13��, in the case D=2. To do so, it has to
be demonstrated that there are critical points in these models,
and the critical coupling strengths gc1 have to be identified.

Previously, two critical couplings gc1 and gc2 were found
in model 2 �20�. The system seemingly becomes critical at
g=gc1 and almost perfect synchronization settles at g=gc2.
There are still isolated oscillators that never fire for g�gc2,
and thus they are not synchronized to the rest of the lattice
�25�. The two critical couplings separate three phases, phase
1 �0�g�gc1�, phase 2 �gc1�g�gc2�, and phase 3 �g
�gc2�. These conclusions were reached by looking at the
distribution of cluster sizes. At g=gc1, this distribution seems

to obey a power law. This is true in phase 2 also if the
macroscopic cluster is disregarded. By estimating gc1 and gc2
for different values of N, it was argued that the three phases
are not a finite size effect but persist as N→�.

Simulations with model 1 suggest that it behaves qualita-
tively in the same way. Instead of showing cluster size dis-
tributions, we look in Fig. 6 at the quantity M− /N, where M−
is the size of the next largest cluster. M− /N is expected to
peak at gc1. Above gc1 the largest, percolating cluster grows
in size as g increases further, whereas the other clusters be-
come smaller. At gc2, M− /N should drop close to zero. In this
way, it is estimated that gc1�0.23 and gc2�0.28 for model
1, whereas gc1�0.50 and gc2�0.56 for model 2 �Fig. 6�.
Figure 7 shows frequency landscapes ��r� in each of the
three phases �21�.

For both models, phase 2 is rather narrow but clearly
distinguishable. To establish the existence of phase 2 even
more clearly, complementary simulations were made for
wider and narrower D� �Fig. 8�.

The hypothesis that will be tested is that the curve gc1���
2 �

is identical to the critical curve Sc, which is also the stable
manifold of a critical fixed point E� �Fig. 4�. Thus I identify
gc=gc1. It is a delicate question whether the entire phase 2 is
critical. In Ref. �20� I hypothesized that this is so, based on
the cluster size distribution and the temporal instability of
clusters, even after very long times. The large sample-to-
sample fluctuations seen in Fig. 6 further strengthen this
idea. The matter is discussed further below.

To test whether phase 3 exists even if D� has tails, model
1 is simulated with Gaussian natural frequencies, with mean
�=0 and variance ��

2 =1 /48, i.e.,

D� = N�0,1/48� . �39�

The variance is chosen to be equal to the variance of the
original, uniform D�. I estimate gc1=0.23 and gc2=0.28.
Phase 3 is entered even if the oscillators with the most ex-
treme natural frequencies do not synchronize to the rest of
the lattice. Model 2 is simulated with the Rayleigh density
function

FIG. 6. The portion M− /N of the lattice occupied by the next
largest frequency cluster as a function of coupling strength g. The
maximum of M− /N corresponds to gc1 and it drops almost to zero at
gc2. For model 1 it is found that gc1�0.23 and gc2�0.28, and for
model 2 gc1�0.50 and gc2�0.56. Average and standard deviation
of 7 realizations of models 1 and 3 realizations of Model 2 are
shown for each g.
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�D�−1 = 4	��−1 − 1�e−2	��−1 − 1�2
, �−1 � 1

D�−1 = 0, �−1 � 1.
� �40�

In this model, it is found that gc1�0.55 and gc2�0.75. Phase
3 is entered even if the slowest oscillators do not synchronize
to the rest of the lattice.

I hypothesize that the transition to phase 3 is discontinu-
ous since the distribution of cluster sizes seems to collapse
discontinuously at gc2. However, more detailed studies are
needed to establish the nature of this transition and to be able
to define phase 3 precisely.

B. Frequency correlations

We have E��k��=m�� =m�=E��k� from Eqs. �19� and �29�
and

var��k�� = var��k� + b−D �
k,k��j, k��k

cov��k,�k�� �41�

from Eq. �31� �21�. At a fixed point E�, the sum has to be
zero for any b if var���k���, which is the case treated here
�Eq. �25��. Therefore we must have cov���k ,�k��=0 for all
k�k. Introducing the pair-correlation function

���r� = cov��k,�k���k�−k�=r/var��k� , �42�

it is concluded that

��
� �r� � 0, r � 1. �43�

Note that even if ��
� �r��0, the �ks do not have to be inde-

pendent at a critical fixed point. Rather, clusters of oscillators
which run at the same frequency are expected �Fig. 7�.

Figure 9 shows the correlation length �̂� defined by the
relation

����̂�� = e−1. �44�

�Note that this is not the standard way to define a correlation
length, thus the hat symbol. Normally it is defined as the rate

of exponential fall-off at large r, cf. Eq. �82�. The quantity �̂�

is used here since it turned out to be more stable, given the

fluctuations of ���r�.� In model 1, �̂� drops significantly just
above the estimated value of gc1, with comparably small

sample variations. In phase 2, �̂� seemingly increases again

FIG. 7. Frequency landscapes ��r�. Frequency is coded accord-
ing to the bracket ��min�max�. An oscillator k is colored black if �k

is less than �min and white if it is higher than �max.

FIG. 8. Phase diagrams. The same quantity M− /N as in Fig. 6 is
used to identify gc1 and gc2. For model 1, D� is uniform with
support �1,1+��. For model 2, D�−1 is uniform with the same sup-
port. Phase 1 is subcritical with microscopic frequency clusters
only. In phase 2, there is one macroscopic cluster. In phase 3, al-
most all oscillators synchronize their frequencies. All three phases
seem to persist even if D� has tails �see text�. For model 2, it is
impossible to resolve phase 2 in the data obtained with �=0.3. I
cannot decide whether phase 2 extends down to the origin, or if
there is a triple point.
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even if large variations make such a conclusion uncertain. In

model 2, �̂� falls steeply toward zero just below gc1 and stay
very close to zero for g�gc1 with very small variations.

Thus, model 2 supports the theory better than model 1

does. However, the drop of �̂� in model 1 may occur exactly
at gc1, given the uncertainty in its estimation due to the large
sample variations of the cluster sizes �Fig. 6�.

No indications of negative correlations have been ob-
served.

C. Frequency distribution

Consider the density function D� of attained frequencies
�k �21�. I do not attempt to deduce �D��� but discuss some
of its basic properties.

We have already concluded that assumption �23� implies
that E���k� and var���k� both exist. Put differently, if the
critical properties of models 1 and 2 are to be the same as
those deduced for the fixed point E�, then E��k� and var��k�
should exist at g=gc1. Infinite var��k� at g=gc1 and finite
var���k� make necessary negative frequency correlations
�Eqs. �41� and �42�� along the critical line Sc �Fig. 4�, which
have not been observed in simulations.

At g=gc1, the order parameter r �Eq. �1�� becomes non-
zero, that is, a finite portion of the oscillators attain identical
frequencies so that an infinitely high spike develops in D� as
g approaches gc1 from below:

lim
g→�gc1�_

max�D�� = � . �45�

Let us use Eq. �31� to write

�̃ j = E��k� + b−D/2�
k�j

��k − E��k�� . �46�

At a critical fixed point, the emerging spike should not move
when pb is applied so that

��peak�� = E���k� , �47�

where D���peak�=max�D��.
Equation �46� can be used to renormalize a frequency

landscape numerically, just like an Ising lattice can be renor-
malized by assigning the direction of the block spin accord-
ing to the majority rule. Ideally,

lim
b→�

�D�̃�gc1
= �D���, �48�

but there are numerical problems �apart from the dynamical
instability�. First, small frequency gradients in a presumed
cluster are magnified by Eq. �46�. Second, a block oscillator
containing a cluster border will not be part of the renormal-
ized cluster, which distorts the renormalization of cluster
sizes for small and medium sized clusters, such as those
obtained in a simulation. Basically, the problem is that the
frequencies are continuous variables, whereas spins are dis-
crete.

Figure 10 shows numerical estimations of D� for model 1
and model 2. Panels �a� show that �peak�E��k�, at least for
g�gc1, indicating that Eq. �47� is fulfilled. This is true even
if D� is not symmetric about its mean. However, in model 2
for g�gc1, it is clear that ��peak��E��k�.

Panels �b� in Fig. 10 show the low-frequency tails for
each model at different values of g. Just below and at g
=gc1 it seems that

D���k� 
 ��peak − �k�−� �49�

with ��4 �dashed lines�, suggesting that the requirement
that var��k� exists at g=gc1 is indeed fulfilled. Regarding the
high-frequency tails, in model 1 they seem to fall off quicker
than a power law for the largest frequencies for all g. In
model 2, there seems to be no tails close to and above gc1.

FIG. 9. The frequency correlation length �̂� �Eq. �44��. Accord-

ing to Eq. �43�, �̂� is expected to drop to zero at g=gc1. The same
number of realizations as in Fig. 6 are used. Since linear interpola-

tion is used, zero correlation between neighbors gives �̂�=1−e−1

�dotted horizontal line�.

FIG. 10. Density functions D� of attained frequencies �k. in
models 1 and 2. The vertical dashed lines in panels �a� show the
mean frequency E��k�. Panels �b� show the low-frequency tails.
The dashed lines correspond to a relation D���k�
 ��peak−�k�−4.
The critical coupling strengths are gc1=0.23 for Model 1 and gc1

=0.50 for Model 2.
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Figure 11 shows numerical renormalizations in phases 1
and 2 using Eq. �46�. The outcomes are qualitatively differ-
ent, indicating that different fixed points are approached in
the two cases. We have not been able to obtain convergence
toward the presumed critical fixed-point density function D�

�

using a system close to g=gc1. Instead, the outcome is simi-
lar to that shown in phase 1 although the normal distribution
is approached more slowly �as b increases�. The reason may
be that, numerically, some positive correlations are still re-
maining �Fig. 9�.

The frequency correlation function ���r� drops close to
zero in phase 2, but it seems that it never becomes negative.
This means that var��̃ j��var��k�. Thus the flow under Rb
cannot go toward perfect synchronization �r=1�, for which
var��k�=0, but it can reach states where the lattice is syn-
chronized except for isolated oscillators with opposing fre-
quencies. Such states are indeed seen at coupling strengths
slightly larger than gc2 �Fig. 7�. If there is a nontrivial fixed
point corresponding to such a state, then the outlier oscilla-
tors must have a fractal spatial distribution. Otherwise they
will “eat” the synchronized part of the lattice, and r→0 as
b→�. This effect is seen in Fig. 11 as a �slightly� decreasing
height of the spike and an elevated baseline of outlier oscil-
lators as b increases.

D. Cluster frequencies

Assume that the frequency of a cluster C with spatial size
S�1 is bounded by the inequality

��C − m�� � ��max�S� , �50�

where �k=�C whenever k�C �21�. For t�1, choose b�S

and apply pb. We get S̃=b−DS, and �C̃−m�=bD/2��C−m��
from Eq. �31�. Consequently, ��max� �b−DS�=bD/2��max�S�,
and at a fixed point we get

��max
� �S� 
 S−1/2. �51�

Thus, the cluster frequencies vary less and less as their sizes
increase.

Figure 12 shows comparisons between the theoretical pre-
diction in Eq. �51� and numerical data. The numerical differ-

ence �̂max−�̂min as a function of S is studied rather than the

differences �̂max− m̂� or m̂�−�̂min, where m̂� is a numerical
estimation of m�. The reason is that I want to estimate as few
quantities as possible. Especially for large S, the latter differ-
ences are very sensitive to the choice of m̂�. Note however,
that if these differences are used, data are obtained that sup-
port Eq. �51� to the same extent as the data shown in Fig. 12
does. Around gc1 and in phase 2, the agreement with theory
is reasonable, given the fluctuations in the data. This gives
further support to the idea that the entire phase 2 is critical.
For model 2, the large values of �� for g=0.50 and 0.54 for
S=1 and S=2 are due to the existence of isolated oscillators
which are transiently suppressed, with �k�0 �20,25�.

FIG. 11. Density functions D̃� of attained renormalized frequen-

cies �̃ j. Equation �46� is used for the numerical renormalization
with different scale factors b. In phase 1 �g=0.20 for model 1 and

g=0.45 for model 2�, D̃� approaches a normal distribution corre-
sponding to a trivial fixed point at g=0. This does not seem to be
the case in phase 2 �g=0.255 for model 1 and g=0.54 for model 2�.

FIG. 12. �̂max and �̂min are the minimum and maximum fre-
quencies of clusters of size S found numerically. Let us write ��

=�̂max−�̂min. Lower bounds on ��max�S� are shown, assuming
d��max /dS�0, ∀S �piecewise linear, continuous curves�. Dashed
lines: predictions by Eq. �51� for a critical ensemble. Data from 10
realizations of ��k� for each g.
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E. Frequency transient

From Eq. �28� we get m̃�t��=E�d�̃ j /dt��=bD/2m�t�
− �bD/2−1�m�. At a fixed point we have m��b−D/2−1t�−m�

�

=bD/2�m��t�−m�
� � with solution

m��t� − m�
� 
 t−D/�D+2�. �52�

Close to the critical couplings gc1�0.23 �model 1� and
gc1�0.50 �model 2�, the agreement with Eq. �52� is excel-
lent in the data shown in Fig. 13. In the double-logarithmic
plots, there is a tendency to a gradual increase of the slope as
g increases, suggesting that the scaling expressed in Eq. �52�
only applies at gc1, and not in the entire phase 2. This in turn
suggests that phase 2 is not critical, at least that it is not
attracted to the critical fixed point E� described in this paper.

F. Mean frequency for finite N

Taking the ensemble mean of Eq. �36� gives E��̃ j�−m�

=bD/2�E�m� j�−m��. We may write m�=m��N� and then have
E�m� j�=m��bD�. If we first let the size of the whole lattice go
to infinity and then set bD=N, we get

m��N� − m���� = N−1/2�E��̃ j� − m����� . �53�

Taking the ensemble mean of Eq. �32� in the limits N→�

and t→�, we get m̃����=E��̃ j�+E�h�̃ j�. Using Eq. �29�, we
may therefore write

m���� − m��N� = N−1/2E�h�̃ j� . �54�

At a critical fixed point E�, E��h�̃ j�=E��h� k� for all b �or N� and
therefore m��N�−m����
N−1/2 for all N. At a critical en-

semble attracted to E�, we have E��h�̃ j�→E��h� k� as b→� so
that

m��N� − m���� 
 N−1/2, N � 1. �55�

For odd coupling �Eq. �59��, we have E�h�̃ j�=E�h� k�=0 and
m��N�=E��k� for all N. This corresponds to zero constant of
proportionality in Eq. �55�.

For subcritical ensembles it is expected that

limb→� E�h�̃ j�=0, and for supercritical ensembles that

limb→� E�h�̃ j�=�. In both cases, Eq. �55� cannot be expected
to hold as N→�.

Nevertheless, the data in Fig. 14 is consistent with Eq.
�55� for all shown g. However, crossover to another scaling
for larger L=�N cannot be excluded. For both models, the
asymptotic behavior is reached for larger L for higher values
of g. Due to poor data quality �cf. Fig. 13�, estimated values
of m��� have to be relied upon, chosen to get curves in the
double-logarithmic plots that are as straight as possible for
large L. Another possible source of error is that I had to
compute the mean frequencies at a rather small time t
=1000 due to limited computational resources. However,
tests with smaller and larger t indicate that this is not crucial.

G. Correlations of interactions

Let us turn to the renormalization of the interactions hk. It
turns out to be useful to decompose hk into the coupling
functions f lk and to define the asymmetry function

dm�x,y� � f lk�y,x� + fkl�x,y� , �56�

where m is the edge connecting oscillators l� j and k� j. Let
n be a directed edge across �j �Fig. 15�, and let us write fn
= f lk, where l� j and k� j. We then have

FIG. 13. Transient of mean frequency m�t�. Lattice size 2000
�2000. The dashed lines correspond to the prediction by Eq. �52�
for a critical ensemble. Good data quality enables use of dm /dt, so
that no asymptotic values have to be estimated �cf. Fig. 14�.

FIG. 14. Mean frequency m�t� at time t=1000 versus L=�N.
Averages of up to 400 000 /N realizations. Estimated values of
m��� �dashed horizontal lines� provide good agreement with Eq.
�55� for all g �dashed diagonal lines�.
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h�̃ j = b−D/2g��
n

f�n + �
m

�d�m − d�m
��� , �57�

where dm
��x ,y�= f lk

��x ,y�+ fkl
��y ,x�. To make the following

expressions more compact, let

�d�m = d�m − d�m
� �58�

be the mean increase of dm as block j is connected to its
neighbor block oscillators. For odd coupling, i.e.,

f lk�y,x� � − fkl�x,y�, ∀ lk , �59�

we have dm�dm
��0. An example is the Kuramoto model

f lk�x ,y�=sin�2	�x−y��.
Information about critical behavior can be gained by com-

paring moments of the original and renormalized interac-
tions: E�h� k�, E�h� k

2�, and so on. A comparison between E�h� k�
and E�h�̃ j� just leads us back to Eq. �54�. Below, I focus

instead on var�h� k� and var�h�̃ j�, from which information can
be gained of two-point correlations of the interaction. At this
point we make use of assumption �23�. We may then write

var�h�̃ j� = b−D �
k,k��j

cov�h� k − h� k
�,h� k� − h� k�

�� , �60�

or, upon decomposition,

var�h�̃ j� = b−Dg2�
n,n�

cov�f�n, f�n�� + b−Dg2�
n,m

cov�f�n,�d�m�

+ b−Dg2 �
m,m�

cov��d�m,�d�m�� = S1 + S2 + S3. �61�

In the following, three correlation functions will be used:

� f�
�r� = limt→�

cov�f�lk, f�l�k���l�k�−lk�=r

var�f�lk�
,

� f��d��r� = limt→�

cov�f�n,�d�m��n−m�=r

cov�f�n,�d�m��n−m�=1
,

��d��r� = limt→�

cov��d�m,�d�m��m−m��=r

var��d�m�
. �62�

Note that f lk has a direction of influence l→k and that dm is
vertical or horizontal. Correlations between different types of

pairs should therefore be separated, and summed up to yield
the covariances in Eq. �61�. Numerically, only parallel pairs
are considered.

A necessary fixed-point condition is var��h�̃ j�=var��h� k� for
any b as t→�, or, in particular, at a nontrivial fixed point,

lim
b→�

lim
t→�

var��h�̃ j� = const � 0. �63�

We may write

S1 
 b−D

1

b

N1�r�� f�
�r�dr , �64�

where

N1�r� = O�bD−1rD−2� �65�

is the number of pairs nn� at distance r �Fig. 16�. It follows
that

lim
b→�

S1 = const � 0 ⇔ � f�
��r� 
 r2−D. �66�

Similarly,

S2 
 b−D

1

b

N2�r�� f��d��r�dr , �67�

where

N2�r� = O�bD−1rD−1� �68�

is the number of pairs nm at distance r �Fig. 16�. Therefore it
is expected that

lim
b→�

S2 = const � 0 ⇔ � f��d�
� �r� 
 r1−D. �69�

Turning to S3, we may write

cov��d�m,�d�m�� = ������d��r� , �70�

where � is the smallest distance from any of the two edges m
or m� to �j and r is the distance between m and m� �Fig. 16�.
The function

���� = var��d�m� �71�

measures how the lattice that surrounds block j, in the mean,
changes d�m at distance � from �j so that we have

��1� � 0

lim�→� ���� = 0. �72�

FIG. 15. The interaction hk is a sum of the 2D coupling

functions f lk. In the same way, the interaction h̃j of block j
can be decomposed into a sum of 2DbD−1 border terms fn and
DbD�1−b−1� interior terms dm= f lk+ fkl.

FIG. 16. Pairs of interactions and distances in a block-oscillator
j, used in the expressions for S1, S2, and S3 in Eqs. �61�, �64�, �67�,
and �70�.
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We may then write

S3 
 b−D

1

b/2

����

1

b−2�

N3��,r���d��r�drd� . �73�

Here,

N3��,r� = O��D−1rD−1� �74�

is the number of pairs mm� for given �. In a critical fixed-
point ensemble, it is expected that

����� 
 �−�, �75�

and therefore we get

lim
b→�

S3 = const � 0 ⇔ ��d�
� �r� 
 r�−D, �76�

provided ��1.
I have not been able to deduce the value of � from first

principles. Figure 17 shows numerical estimations of ��r� for
model 1 and model 2. It seems that �=1 /4 for model 1 and
�=1 /2 for model 2, and thus that it is a nonuniversal model
dependent critical exponent. Scaling form �75� seems to ap-
ply only at g=gc1, suggesting that phase 2 is not critical.

It can be argued that since d�m and �d�m are linear combi-
nations of f�lk and f�lk

�, � f�
, �d�, � f��d�, and ��d� should have the

same functional form for r�1. Then,

� f�
� 
 �d�

� 
 r−�, �77�

with

� = D − 2, odd f lk �case 1� ,

� = D − 1, other f lk, � � 1 �case 2� ,

� = D − �, other f lk, � � 1 �case 3� . �78�

The terms S1, S2, and S3 are responsible for criticality in the
three cases, respectively. In case 1,

S1
� = const � 0,

S2,3
� = 0. �79�

�In fact, S2,3=0 for all ensembles since dm�x��0.� In case 2,

limb→� S2
� = const � 0,

limb→� S1,3
� = 0, �80�

and in case 3,

limb→� S3
� = const � 0,

limb→� S1,2
� = 0. �81�

In cases 1 and 2, critical behavior is ruled out below D=3
and D=2, respectively, since correlations must decay with r.
In case 1, the result Dc�2 by Daido �29� is regained.

The numerical results in Fig. 17 suggest that ��1 for
both models 1 and 2, and thus that the term S3 is responsible
for criticality in both models. However, since the estimated
values of � differ, it is possible that there are other nonodd
models with ��1, in which case S2 becomes the crucial
term.

Figure 18 shows numerical estimations of � f�
�r� and �d��r�.

Looking at �d��r�, the data is consistent with the combined
theoretical and numerical predictions �Eq. �78� and Fig. 17�
in both models 1 and 2. Looking at � f�

�r�, the data are con-
sistent with theory only in model 2.

The reason for this discrepancy between numerical data
and theory in model 1 is likely to be found in the fact that
� f�

�r� is less well behaved than �d��r� for finite lattice sizes.
The phase fields ��x ,y� become more and more well ordered
as g increases, containing just a few foci or spirals as phase
3 is approached �at the present lattice size� �25�. Therefore
the phase waves tend to move in opposite directions at op-
posite ends of the lattice, giving rise to negative correlations

FIG. 17. ����=var��d�m� as a function of the distance � from �j
to the edge m �Fig. 16�. For both models, it seems that ����
�−� at
gc1. For model 1, ��1 /4, and for model 2, ��1 /2. Lattice size:
140�140. Block size: 70�70. Transient time: t=5000. For each of
10 realizations of ��k�, 20 initial conditions ��0� were used.

FIG. 18. Pair correlations of f� �left� and d� �right�. According to
Eq. �78� and the estimations of � in Fig. 17, it is expected that �
=−7 /4 for model 1, and �=−3 /2 for model 2 in critical ensembles
�dashed lines�. Ten ��0� were used for each g to estimate the initial
condition mean. In model 2, a time average of each f lk was calcu-
lated during �t=100, due to its pulselike nature. The choice of �t
did not affect the results.
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of f� at large distances. This dependence on the wave direc-
tion of the correlations is eliminated by the definition of d
�Eq. �56��.

This problem is illustrated for model 1 in Fig. 19. Close to
criticality, for g=0.23, �d��r� converges nicely toward zero as
r increases, whereas � f�

�r� drops significantly below zero,
and then fluctuate, at least up to r=150. �This is the maxi-
mum r considered, since the lattice size is 300�300.� This
effect is more prominent for larger g as seen in the estima-
tion of � f�

�r� for g=0.30. The zero crossings of � f�
�r� is the

reason why the curves drop sharply in the double-
logarithmic plots in Fig. 18.

H. Correlation length

Let us analyze � f�
close to a critical fixed point in a sub-

critical ensemble and make the standard ansatz

� f�
�r� = cr−�e−r/���g�, �82�

where
�g = �g − g��/g�. �83�

As discussed below, subcriticality is expected only for g
�g�. It is therefore assumed that �g�0. We may write
var�f�lk�=F�g�. Assuming that dF /dg�0 at g=g�, we have

�g 
 var��f�lk� − var�f�lk� �84�

for small enough �g. Consider the case of odd coupling.
From expression �64� for S1 we get

�g� 
 b−1

1

b

rD−2�� f�
��r� − � f�

�r��dr . �85�

Taylor expanding the exponential part of � f�
gives �g�


b�−1. Using ��=� /b, specifying �=� f�
, it is seen that the

correlation length of the initial condition mean of the cou-
pling f lk diverges according to

� f�

 �g−1, �86�

for small enough ��g� if �g�0. A similar calculation gives
the same result in the cases of nonodd coupling, using the
expressions for S2 and S3.

Indeed, simulations suggest that � f�
diverges at g=gc1, but

unfortunately I have not been able to obtain good enough
data to test relation �86�. The fluctuations in the estimated � f�
are too large close to gc1. �I used up to three realizations of
��k� for each g, and for each ��k�, ten ��0� were used to
estimate the initial condition mean.� It was not possible to
use data from estimations of �d� either since it drops close to
zero for too small r to be able to resolve its functional form.

I. Direction of the renormalization flow

In Fig. 17 the exponent � is estimated in the relation
����
�−� �Eqs. �71� and �75�� that is expected to hold in a
critical ensemble. Let us call these estimations �1 and �2 for
models 1 and 2, respectively. In phases 2 and 3, ���� clearly
falls off slower than this. Figure 18 shows that in phases 2
and 3, � f�

and � f�
falls off as r−�D−�1� �model 1�, r−�D−�2�

�model 2�, or possibly slower. Taken together, these observa-
tions suggest that condition �76� is violated in phases 2 and
3, and that limb→� S3=�. This in turn means that
limb→� var�h�̃ j�=limb→� var�h� k��=�, and that the renormal-
ization flow goes in the direction of increasing g for g
�gc1 �Fig. 20�. That the flow goes toward g=0 for g�gc
becomes clear from a similar argument. I have mentioned the
possibility that the entire phase 2 is critical and that it is
attracted to the critical fixed point E�. Some numerical results
favor such an interpretation �see Figs. 9, 12–14, and 18 and
also Ref. �20��. However, based on the combined numerical
and theoretical argument given above, I hypothesize that this
is not so.

Referring to the discussion in Sec. V C, it seems that the
renormalization flow in phase 2 cannot approach states with
r=1. Therefore it is probable that phase 2 is invariant under
Rb. There may be a second, attractive fixed point with
var��k�=� somewhere along the line separating phases 2
and 3, possibly at infinity where g→� or ��

2 →�.
Correlation functions seem to decay as a power law or

slower for all g�gc1. In fact, Eqs. �64�, �67�, and �70� pre-
dict that finite correlations lengths are excluded for g�gc1
since whenever � f�

has an exponential factor, limb→� S1–3

=0. This corresponds to a renormalization flow toward g

=0 �var�h�̃ j�=0�, which can be expected only for g�gc1.
Therefore, phases 2 and 3 must be considered supercritical.

VI. DISCUSSION

In this paper, I present a real-space renormalization trans-
formation for oscillator lattices with quenched disorder. The

FIG. 19. Illustration of the fact that numerical estimations of
� f�

�r� are less well behaved than those of �d��r�. For a given finite
lattice size, � f�

�r� becomes more ill-behaved when g increases �see
text�. In model 2, a time average of each f lk was calculated during
�t=100. �cf. Figure 18�.

FIG. 20. Hypothetical flow under Rb in a one-dimensional pro-
jection of �E�. The critical coupling strength gc1 is supposed to
belong to the stable manifold Sc of the critical fixed point E� �cf.
Fig. 2�. It is speculated that the flow does not pass gc2, i.e., that
phase 2 is invariant. See text for explanation.
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transformation acts on ensembles of lattices and predicts the
behavior of ensemble averaged quantities. It is assumed that
the variance of the natural and attained frequencies exists,
but it should be possible to generalize the theory. A bold
hypothesis is that if a system of form �9� is critical for some
parameter values, then the critical behavior is given by the
critical fixed point E� described in this paper. At its present
stage, the theory cannot be used to decide whether a given
system possesses a critical phase transition. However, lower
bounds on critical dimensions for different classes of systems
are given.

In this respect, the crucial difference between odd and
nonodd coupling stands out clearly in the analysis. For non-
odd coupling, macroscopic synchronization cannot be ruled
out for any dimension D�1, whereas for odd coupling it is
necessary that D�3. Perfectly odd coupling must be re-
garded as a nongeneric special case, except for particular
problems that can be mapped onto Kuramoto-type models,
such as Josephson-junction arrays �18�.

The merits of the approach are that it is simple, that it
applies to a broad class of systems, that several predictions
about critical behavior can be extracted, and that it is poten-
tially exact. Most of the predictions have been tested numeri-
cally with two structurally different two-dimensional models.
The agreement with theory ranges from acceptable to very
good. The drawback of the approach is that the theory must
be considered heuristic at its present stage. Its full potential
and its mathematical foundation should be clarified.

My experience is that it is computationally demanding to
get good numerical data to compare with theory. Large os-
cillator lattices �O�105� oscillators� and long simulation
times �O�105� periods of oscillation� are typically needed to
see critical behavior. Further, to get good ensemble averages,
it seems that O�10� realizations of the initial condition are
needed for each of O�10� to O�100� realizations of natural
periods. In other words, O�100� to O�1000� realizations are
needed for lattice sizes and integration times of the above
order of magnitude. This is probably the reason why almost
no clear-cut numerical results regarding the existence or non-
existence of phase transitions in oscillator lattices have been
presented in the past �Sec. II B�. The data presented in this
paper should be seen as an initial overview of the behavior of
some relevant quantities. A more detailed study of each
quantity is needed. In particular, the number of realizations
of natural periods has to be increased.

To put the theory to further test, it goes without saying
that simulations of oscillator lattices with dimensions other
than D=2 are called for. Perhaps the quantities used in this
paper can be used to find an answer to the long-standing
question whether there is a transition to macroscopic syn-
chronization in the three-dimensional Kuramoto model.

It is worth noting that the relevance of the second critical
coupling gc2 is established in this study. It was first described
in Ref. �20�, but there a density function D� of natural fre-

quencies with finite support was used. Here, I find that it is
present even if D� has tails. It is therefore a more generic
transition than that to R=1 in the globally coupled Kuramoto
or Winfree models �27�, appearing when D� has no tails. The
nature of the transition at gc2 is a subject for future work, and
the question whether there is an additional nontrivial fixed
point associated with this transition is left unanswered.

Theory and numerics taken together indicate that the
renormalization flow goes toward increasing g for g�gc1
�Fig. 20�. I judge that both phases 2 and 3 are supercritical,
and Sec. II gives a technical argument why this is so. Here, a
qualitative argument is presented why an oscillator lattice
cannot be subcritical above gc1, that is, why correlation func-
tions cannot have exponential tails, corresponding to finite
correlation lengths.

Correlation lengths relate to the typical distance a pertur-
bation or fluctuation spreads. Let us compare with the Ising
model, which is subcritical both above and below the critical
temperature Tc. In the ordered phase below Tc, most spins
are aligned. Let us introduce a perturbation in the form of a
spin with opposite direction. Such a spin increases the prob-
ability that a neighbor spin will also flip. The perturbation
tends to spread. However, the lower the temperature, the
smaller the probability that the neighbor will flip, according
to the Boltzmann distribution. Thus, a typical perturbation
spreads shorter distances, and the correlation length drops.

The situation is quite different in the ordered phase of an
oscillator lattice, where I am thinking mainly of states with
partial frequency synchronization �0�r�1�. A perturbation
in such a lattice corresponds to an oscillator k that runs at a
different frequency. This perturbation spreads to the rest of
the lattice via the coupling functions, which will not vary
with the entrained frequency. Assume for simplicity that the
coupling has the form g�lk��l−�k�. The peak magnitude of
this perturbation can only increase with g, since the argu-
ment takes on all values in the range �0,1� because �l and �k
are assumed to be different. Thus, if the correlation lengths
are infinite at a critical coupling gc1, they should stay infinite
even if g�gc1.

In conclusion, I hope that this study will inspire further
theoretical and numerical work on macroscopic synchroniza-
tion in oscillator lattices. Unfortunately, the understanding of
these systems has fallen way behind the understanding of
globally coupled oscillator networks. A better understanding
of oscillator lattices should also promote the understanding
of transitions to macroscopic synchronization in complex
networks since the topology of these often can be seen as
lying in between the topologies of the lattice and the fully
connected network.
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