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We study and classify firing waves in two-dimensional oscillator lattices. To do so, we simulate a pulse-
coupled oscillator model aimed to resemble a group of pacemaker cells in the heart. The oscillators are
assigned random natural frequencies, and we focus on frequency entrained states. Depending on the initial
condition, three types of wave landscapes are seen asymptotically. A concentric landscape contains concentric
waves with one or more foci. Spiral landscapes contain one or more spiral waves. A mixed landscape contains
both concentric and spiral waves. Mixed landscapes are only seen for moderate coupling strengths g, since for
higher g, spiral waves have higher frequency than concentric waves, so that they cannot mix in frequency
entrained states. If the initial condition is random, the probability to get a concentric landscape increases with
increasing coupling strength g, but decreases with increasing lattice size. The g dependence of the probability
enables hysteresis, where the system jumps between the two landscape types as g is continuously changed. For
moderate g, spiral tips rotate around a suppressed oscillator that never fires. We call such an oscillator an
oscillator defect. A spiral may also rotate around a point defect situated between the oscillators. In that case all
oscillators fire at the entrained frequency. For larger g, a spiral tip either moves around a row of suppressed
oscillators, a row defect, or around an open curve situated between the oscillators, which may be called a line
defect. The length of a row or line defect increases with g. Our results may help understand sinus node reentry,
where the natural pacemaker of the heart suddenly shifts to a higher frequency. Some of the observed phe-
nomena seem generic, based on simulations of other models.
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I. INTRODUCTION

Networks containing a large number N of limit cycle os-
cillators appear in many areas of science �1�. Examples are
pacemaker cells in the brain and heart, swarms of fireflies,
and applauding audiences. There have been large efforts to
understand the collective dynamics of such systems. Math-
ematical analysis is easiest if the oscillators are identical or
are coupled all-to-all �2,3�. In the applications, however, os-
cillator networks tend to have spatial structure and consist of
units with diverse natural frequencies. There are few analyti-
cal results applying to such systems �4–6�, and to a large
extent, we still have to rely on numerical simulations to ex-
plore their dynamics.

We have previously simulated a two-dimensional square
lattice of diverse oscillators aimed to resemble pacemaker
cells in the heart �7�. As coupling strength increases, we
found two phase transitions in the thermodynamic limit
N→�. At the first transition, the largest frequency entrained
oscillator cluster becomes infinite. At the second, global fre-
quency entrainment settles.

In this paper, we study the same system in the frequency
entrained regime. In the biological applications, many oscil-
lator communities operate here. This is the case for the sinus
node, which is the natural pacemaker of the heart �8�. It

probably consists of millions of pacemaker cells. Frequency
entrainment is also present in epileptic brain tissue �9�, in
cell groups responsible for the circadian rhythm �10� and
locomotion �11�, in the electric organ of weakly electric fish
�12�, and in some species of fireflies �13�.

The purpose of the present paper is to study firing waves
in this kind of system. Biological oscillators can often be
described as integrate and fire oscillators, which fire pulses
at a natural frequency. In the case of pacemaker cells in the
heart, the pulses are electrical, and perturb the rhythmic ac-
tivity of neighbor cells. The pulses may also be light flashes,
chemical signals, acoustic waves, or have some other nature.
The firing of one oscillator often triggers the firing of its
neighbors, so that a firing wave is formed.

Generally, waves in oscillatory media can be described as
waves in the phase field. The phase at some point in the
medium is the position in the oscillation cycle of this point.
Most studies of such waves deal with continuous media
�1,14�, such as the Belousov-Zhabotinsky reaction in a thin
fluid film �15� and the Ginzburg-Landau model �16�. Both
concentric and spiral waves have been observed. A spiral
wave implies a phase singularity, a point in the medium
where the phase cannot be defined. Recently, interest has
focused on spiral waves with line defects, where the phase is
discontinuous along a curve �17�. In these continuous media,
the natural frequency of oscillation is most often assumed to
be homogeneous. In discrete media, where the oscillators
have diverse natural frequencies, some examples of concen-
tric waves �18� and spirals �19� have been reported in fre-
quency entrained lattices. However, to our knowledge, no

*Electronic address: eric.straeng@uni-ulm.de
†Electronic address: per.ostborn@matfys.lth.se

PHYSICAL REVIEW E 72, 056137 �2005�

1539-3755/2005/72�5�/056137�14�/$23.00 ©2005 The American Physical Society056137-1

http://dx.doi.org/10.1103/PhysRevE.72.056137


systematic study of wave patterns in this kind of system has
been performed. The present study is an attempt in this di-
rection.

The model we use is particularly suited to study the sinus
node. Experimentally, a single concentric wave in the sinus
node is found to initiate the normal heartbeat �8�. However,
in the cardiac condition known as sinus node reentry, an
excitation wave that circles around the sinus node is found
�20�. This suggests the presence of one or more spirals inside
the node. Also, the beating frequency of the heart suddenly
increases. We will see that some of our results may have
relevance to this condition.

II. MODEL AND NUMERICAL METHODS

We consider oscillators placed on a square, two-
dimensional lattice. The state of each oscillator is given by
the phase 0��ij �1. The equation of motion of the system
can be written

�̇ij =
1

�ij
+ gh��ij� �

kl�nij

���kl� . �1�

The natural periods �ij are random numbers from a uniform
distribution with �min=1.0 time units �tu� and �max=1.5 tu.
The oscillators interact bidirectionally with their nearest
neighbors, so that nij = ��i+1, j� , �i−1, j� , �i , j+1� , �i , j−1��.
An oscillator �k , l� is said to fire when �kl=1. Then �kl�0
and pulses are delivered to its neighbors, perturbing them
according to �ij ��ij +gh��ij�. Here, g is the coupling
strength and h��� is the phase response curve �PRC�.

Our choice of PRC �Fig. 1� approximates the response of
a cardiac pacemaker cell to a brief electric current, coming,
e.g., from a neighbor cell that fires an action potential �21�.
From the requirement 0��+gh����1, it follows that
0�g�1. If g=1 and �ij 	�+, a pulse delivered to oscillator
�i , j� will immediately bring this oscillator to the firing state.
This corresponds to an infinitely fast transmission of firing
waves and, therefore, to infinitely strong coupling.

The method of integration is the same as in Ref. �7�. In
the one-dimensional case, the method is described in detail
in Ref. �5�. The lattice is divided into blocks of 10
10 os-

cillators. After each time increment �t=0.01, we let
�ij ��ij +�t /�ij for all oscillators �i , j�. Then the blocks are
checked in a predefined order. There may be some oscillators
in a block that is currently checked that have �ij 	1. These
have fired at some point in time after the previous time in-
crement. The phase of the oscillator in the block that must
have fired first is reduced by 1, and pulses are delivered to its
neighbors. Then the oscillator that must have fired second to
first is handled, and so on, until �ij �1 for all oscillators
within the block. Then the algorithm moves on to the next
block. This algorithm becomes an exact method of integra-
tion if the block size is the same as the lattice size. The other
extreme is that a block consists of a single oscillator. Then all
oscillators are checked for firings and handled in a pre-
defined scanning order. This may introduce errors if several
oscillators fire within the same time step. This situation oc-
curs quite often in this study, since we consider high g, lead-
ing to a high degree of coherence.

We found that the block method was essential to get ac-
curate results in reasonable time for g	0.8. To check the
accuracy, we used exact integration to simulate lattices of
sizes 50
50 and 100
100 for reference, and then used the
same assignment of natural periods and the same initial con-
dition in different inexact integration schemes. With the
block method, the emerging phase landscapes �see below�
were always the same as the true ones, in the sense that the
positions and numbers of foci and spirals did not change.
However, small deviations of the individual phases at a given
time could be found. In principle, the block method may
introduce a length scale related to the side length of the
block. However, no signs of such length scales were found,
based on visual inspection of phase landscapes produced
with different block sizes. In contrast, for too small block
sizes, artifacts from the scanning order of the lattice were
clearly visible for high g, and spirals and foci were dis-
placed. Of course, errors are reduced if �t is reduced, but too
long computation times were then needed to get accurate
results. Exact integration is also unfeasible to use throughout
the study, since the integration time is then �N2, where N is
the number of oscillators. The reason is that during each
period of oscillation, the firing of N oscillators must be
handled, and for each firing, all N oscillators must be
checked to find the one that is to fire first. Nevertheless,
using a reduced number of data points, we checked that Figs.
3 and 7 got the same appearance with exact integration.

In the frequency entrained regime, the overall structure of
the wave pattern stabilizes within a transient of 1000 tu for
the lattice sizes we use. However, the stabilization time de-
pends on g. Unless otherwise stated, measurements were
made after a transient of 5000 tu.

To produce statistics of the model behavior, we use ran-
dom initial conditions, where each �ij�t=0� is an indepen-
dent random number, uniformly distributed in the interval
�0,1�. Both open and periodic boundary conditions are used.

III. RESULTS

A. General

We will call the discrete field ��i , j , t�=�ij�t� a phase
landscape, or just a landscape. As expected in oscillatory

FIG. 1. The phase response curve �PRC� h��� used in model
�1�. It gives rise to diffusive coupling, which tends to decrease
phase differences between neighbor oscillators. We use a=1, �−

=0.4, and �+=0.5.
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media, the phase landscapes exhibit wave patterns. We may
define a wave front to be a curve that runs between the os-
cillators in the lattice, such that the phases of all oscillators
adjacent to the curve on one side are close to 1, and the
phases of all oscillators on the other side are close to 0.
Naturally, a wave front moves in the direction where the
phases gradually decrease from 1. Two wave fronts that meet
annihilate each other �Sec. IV B�.

In frequency entrained lattices, we find three basic types
of stable phase landscapes �Fig. 2�. A concentric landscape
consists of one or more concentric waves that move outward
from a focus. A concentric focus may be defined as an oscil-
lator �i , j� that triggers the firings of all eight oscillators �k , l�
that surround �i , j�. In other words, �+��kl�1 just before
�i , j� fires for all eight oscillators �k , l�.

The spiral landscapes consist of one or more spiral waves
that spiral outward from the tip. Each interior end point of a
wave front corresponds to a spiral. In a continuous two-
dimensional medium, a point p is a spiral tip if

�
c

� � · dl = m, m = ± 1, ± 2, ± 3, . . . , �2�

where the closed curve c encircles p and is small enough. If
we require that c is run through clockwise, a positive m
corresponds to a spiral that rotates anticlockwise, and a nega-
tive m to a spiral rotating clockwise. In a discrete medium,
the integral should be replaced by a summation of phase
differences between neighbor oscillators �i , j� and �k , l� along
a closed path c. The minimum phase difference should be
used, i.e., min��kl−�ij ,1− ��kl−�ij��. We have only come
across spirals with multiplicity of 1, i.e., m= ±1.

Finally, a mixed landscape contains both concentric and
spiral waves.

In the region gc2�g�1, we only find frequency entrained
states. �A possible exception is discussed in Sec. III E.� Here,
gc2	0.56 is the critical coupling at which frequency entrain-
ment first appears in the thermodynamic limit N→� �7�. In
other words, there seems to be no bistability between fre-
quency entrained states and other types of states. This means
that the phase landscape always seems to repeat itself exactly
at the entrained frequency.

In a statistical sense, the behavior of the model seems to
be the same in the two cases of open and periodic boundary
conditions. However, the topological constraints on the phase
landscapes are somewhat different �Sec. IV A�.

Figure 3 shows the lattice and time mean p̄ of the firing
periods pij, in an interval of coupling strengths g that con-
tains the region where frequency entrainment is present.
Each point corresponds to a statistically independent realiza-
tion with random natural periods and a random initial condi-
tion. Above g	0.7, the points fall on one of two clearly
distinguishable arms. All points on the upper arm correspond
to concentric landscapes, and those on the lower arm corre-
spond to spiral landscapes. This conclusion is based on vi-
sual inspection of the phase landscapes, and on algorithms
counting the number of concentric foci and spirals in each
landscape �cf. Figs. 10, 14, and 15�. For lower values of g,
where the arms merge, we find all three types of phase land-
scapes �concentric, spirals, and mixed�. It is important to
note that for a given assignment of natural periods and a
given g, all the allowed types of phase landscapes can be
obtained by just varying the initial condition. The upper arm
seems to converge at p̄=1 as g→1. If we extrapolate the
lower arm toward g=1, it seems to converge at p̄=0.75.
These findings are discussed in Sec. IV C.

The inset in Fig. 3 shows averages of p̄ as functions of g
for three different lattice sizes. We see that the results are
essentially size independent. Though, it seems that in con-
centric landscapes, the entrained period comes closer to one
when the lattice size grows. It also seems that the lower arm
becomes more straight.

It may be noted in Fig. 3 that more and more points seem
to fall on the upper arm as g increases. Figure 4�a� more
clearly shows that the probability to find a concentric land-
scape increases with g. It is also seen that the probability to

FIG. 2. The three different types of phase landscapes. �a� Con-
centric landscape for g=0.9. �b� Spiral landscape for g=0.9. �c�
Mixed landscape for g=0.57. Black corresponds to �=0 and white
to �=1.

FIG. 3. Mean firing periods p̄. Ten realizations were simulated
for each g. The lattice size was 100
100. Points on the upper arm
come from concentric landscapes and points on the lower arm come
from spiral landscapes. Inset: Average p̄, calculated from ten real-
izations, for the lattice sizes 50
50 �dotted line�, 100
100 �dash-
dotted line�, and 200
200 �solid line�. Averages are taken for con-
centric landscapes separately from the other two landscape types.
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find a concentric landscape decreases with increasing lattice
size. This is more clearly seen in Fig. 4�b�. These two panels
give some support to three additional hypotheses: �1� For
each g�1 in the frequency entrained regime and each lattice
size N, there is a nonzero probability Pc to have a concentric
landscape and a nonzero probability Ps to have a spiral land-
scape. �2� For any given N, Pc→1 as g→1. �3� For any
given g�1, Pc→0 as N→�. �As discussed above, mixed
landscapes seem to be forbidden for high enough coupling,
so that Pc+ Ps=1.�

B. Coherence

In the globally coupled Kuramoto model, the onset of
partial frequency entrainment and partial coherence occurs at
the same critical coupling in the thermodynamic limit
N→�. The degree of coherence is often measured by means
of the complex order parameter

z�t� =
1

N
�
k=1

N

e2�i�k�t�. �3�

Partial coherence means that 
z
�0, and 
z
=1 corresponds
to perfect coherence.

In locally coupled networks, the existence of waves in the
phase landscape suggests that we can have frequency en-
trainment without coherence. Nevertheless, it might be inter-
esting to study a coherence measure similar to �3� in our
system. Partial coherence is expected when the wavelength is
larger than the side length of the lattice. We choose to study
the following quantity:

s�t� =
1

N
�
ij

e2�i�ij�t��ij . �4�

The factor �ij causes all exponents in the sum to grow with
the same speed between the firings, producing a measure that
is more well behaved than �3� in our model. The evolution of
s�t� in the complex plane resembles that of a limit cycle. It
approaches a closed curve, to which it returns if the system is
perturbed. In Fig. 5, we see that concentric and spiral land-
scapes have different coherence signatures. The circle traced
out by s�t� in a concentric landscape is approximately cen-

tered at the origin, whereas this is not the case in a spiral
landscape. Further, at a given coupling strength g, the con-
centric circle has a larger area than the corresponding spiral
circle, which is also more deformed. If we let g approach 1,
the coherence becomes almost perfect in concentric land-
scapes.

Since some circles are not centered at the origin, the ra-
dius 
s
 is not a suitable measure of the degree of coherence.
Instead, we use A /�, where A is the area circled by s�t�.
Perfect coherence corresponds to A /�=1. Figure 6�a� shows
this measure for a set of independent realizations, in the
same way as in Fig. 3. Again, two arms separate at g	0.7.
The areas in the upper arm grows smoothly toward 1 and
come from concentric landscapes. The areas in the lower arm
stay small in the range of g values in which we can observe
it and come from spiral landscapes. Figure 6�b� shows mean
areas for three different lattice sizes. We see that the transi-
tion region in which the area grows rapidly moves toward

FIG. 4. �a� The probability Pc to find a concentric landscape as
a function of g for three different lattice sizes N. �b� Pc as a function
of the lattice side length �N for three different values of g. Each
probability is estimated from a sample of 20 realizations.

FIG. 5. The evolution of the complex order parameter s �Eq. �4��
during one period of oscillation for three different phase landscapes.

FIG. 6. Normalized area A /� circled by the order parameter s.
�a� Ten realizations simulated for each g in a 100
100 lattice. �b�
Area averages in a sample of ten realizations for the lattice sizes
50
50 �dotted line�, 100
100 �dash-dotted line�, and 200
200
�solid line�. Averages are taken for concentric landscapes and other
landscape types separately.
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higher g when the lattice size increases. This suggests that
A /�→0 for all g�1 in the thermodynamic limit N→�.
Therefore, there does not seem to be any phase transition
toward coherence at a finite coupling strength �g�1�.

This finding is easily explained if we assume that the
wavelength is independent of N and there is a single concen-
tric focus at large values of g, regardless the lattice size �Sec.
V�. Then, a given g corresponds to a specific wavelength,
and a sufficiently large lattice will contain many wave fronts.
Consequently, there will be little coherence. To be able to
study the wavelength, we introduce a measure q̄ of the mean
time lag between firings of neighbor oscillators. The inverse
of such a measure should be roughly proportional to the
wavelength. We store the last firing instant Tij for each os-
cillator �i , j� before some time limit Tmax. Then

qij = �min
 
Tij − Tkl

p̄

, 1 −

Tij − Tkl


p̄
��

kl�nij

, �5�

where nij is the set of nearest neighbors to oscillator �i , j�, as
defined in Sec. II. We then let q̄= �qij� be the lattice mean of
qij. Contributions from quiescent oscillators are excluded.
Figure 7 shows q̄ for a set of independent realizations. Just as
for p̄ in Fig. 3, the points fall on either of two clearly sepa-
rated arms above g	0.7. In this case, the points on the lower
arm correspond to concentric landscapes, and those on the
upper arm correspond to spiral landscapes. This was con-
cluded in the same way as for the data in Fig. 3. The inset in
Fig. 7 shows averages for different lattice sizes in the same

way as in Figs. 3 and 6. The results are essentially lattice size
independent. In particular, this is true for the concentric land-
scapes at high g. We find that the three curves are well fitted
to the same parabola q̄= �1/4��1−g�2. The exponent 2 may
be interpreted as a critical exponent. Just as in Fig. 3, the arm
corresponding to spiral landscapes becomes more straight in
larger lattices and does not seem to converge at q̄=0 as
g→1. However, for theoretical reasons, this must be the
case, provided spiral landscapes exist in this limit �Sec.
IV C�.

To estimate the wavelength, we use 
	1/ �2q̄�. This ap-
proximation is exact if we are dealing with plane waves that
move horizontally or vertically. In true phase landscapes,
some factor between 1 and 2 should be inserted in the de-
nominator, depending on the curvature of the waves. Our
approximation is acceptable, however, comparing with
wavelengths measured by hand or with the help of the two-
dimensional Fourier transform. Figure 8 shows these wave-
length approximations. The fact that they are independent of
the lattice size �cf. Fig. 7� conforms with the finding that the
degree of coherence decreases when the lattice size grows
�Fig. 6�. From the discussion of Fig. 7, we immediately de-
duce that the wavelength of concentric landscapes diverges
according to 
� �1−g�−2 as g→1. As discussed above, and
in Sec. IV C, the wavelength of spiral landscapes must also
diverge, if they exist in this limit.

C. Concentric landscapes

Simulations with the same assignment of natural periods,
but different initial conditions, strongly suggest that there is
only one stable concentric phase landscape at a given g. In
other words, the system seems to have only one attractor
corresponding to a concentric landscape in the frequency en-
trained regime. �Of course, some initial conditions drive the
system toward other attractors, containing spirals.� This is
not very surprising, since there is only one frequency en-
trained state in the corresponding one-dimensional oscillator
chain �7� of the kind that corresponds to the concentric land-
scapes seen in the simulations.

We also find strong correlations between the concentric
landscapes arising from the same assignment of natural pe-
riods, but from different g �Fig. 9�.

FIG. 7. The local coherence measure q̄ �Eq. �5��. Ten realiza-
tions were simulated for each g in a 100
100 lattice. Points on the
upper arm come from spiral landscapes and points on the lower arm
come from concentric landscapes. Inset: Averages in a sample of ten
realizations for the lattice sizes 50
50 �dotted line�, 100
100
�dash-dotted line�, and 200
200 �solid line�.

FIG. 8. Estimation of the wavelength as 
	1/ �2q̄�. �a� Ten
realizations simulated for each g in a 100
100 lattice. �b� Averages
in a sample of ten realizations for the lattice sizes 50
50 �dotted
line�, 100
100 �dash-dotted line�, and 200
200 �solid line�.
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Figure 10�a� shows the number of foci in a set of inde-
pendent realizations. A focus is defined as in Sec. III A. At a
first glance, the numbers seem unreasonably large, compared
to the visual impression of concentric phase landscapes �Fig.
9�. The reason is that most foci have a very little “area of
influence,” meaning that the closed wave front emanating
from the focus does not have time to grow large before it is
swallowed by a larger closed wave front, emanating from
another focus. Therefore, these small concentric waves are
most often not seen in snapshots of the phase landscape.
Nevertheless, the large focus numbers seemingly drop to-
ward 1 as g→1.

Figure 10�b� shows average focus densities for three dif-
ferent lattice sizes. Curiously, the focus density drops when
the lattice size increases. This is interesting in the context of
the seemingly absent phase transition toward coherence. If
the focus density was independent of N, or increased, the
degree of coherence could remain nonzero as N→� �Sec.
V�.

D. Spiral and mixed landscapes

When the initial condition is varied randomly for a given
assignment of natural periods and a given g, all concentric
phase landscapes that arise seem identical �Sec. III C�. In
contrast, most phase landscapes with spirals that arise do not
seem correlated at all �Fig. 11�.

However, some of these phase landscapes containing spi-
rals are strongly correlated with the corresponding concentric

landscapes �Fig. 12�. The probability to get such correlated
landscapes seems to decrease as g increases. It seems that
both mixed and purely spiral landscapes can be both corre-
lated and uncorrelated. However, we are not certain that
purely spiral landscapes at high g with p̄�1 can be corre-
lated with the corresponding concentric landscape, since can-
didates for such correlated landscapes arise very rarely at
these high values of g. Therefore, the apparent correlations
might be accidental. A more thorough statistical investiga-
tion, using a quantity measuring the degree of correlation
between the two landscapes, would be necessary to resolve
these questions.

The probability to get correlated landscapes containing
spirals seems to decrease quickly when the lattice size in-
creases. They appear often in 50
50 lattices, but very sel-
dom in 100
100 lattices. Nevertheless, if the initial condi-
tion is carefully chosen, they can be seen in very large
lattices also. Figure 12 shows an example in a 300
300
lattice, where the initial condition �ij =0, ∀ij is used for two
different values of g.

We have come across several kinds of spirals. They may
have different global characteristics or different local dynam-
ics close to the spiral tip. Let us first distinguish between two
kinds of global wave front topologies. A spiral may either act
as a focus, like the double spiral in the upper right corner of
Fig. 2�b�, or it may be “enslaved.” Such a spiral is often
sandwiched between two wave fronts, like all other interior
end points of the wave fronts in Fig. 2�b�. These two kinds of
spirals are defined in Fig. 13.

Let us turn to the spiral tip dynamics. In a continuous
oscillatory medium, a stationary spiral tip corresponds to a
point where the phase cannot be defined. As we approach

FIG. 9. Concentric phase landscapes arising from different cou-
pling strengths g, but from the same assignment of natural periods.
The landscapes are strongly correlated. Lattice size 300
300.

FIG. 10. The number nfoci of concentric foci. �a� Ten realizations
simulated for each g in a 100
100 lattice. �b� Average focus den-
sities in a sample of ten realizations for the lattice sizes 50
50
�dotted line�, 100
100 �dash-dotted line�, and 200
200 �solid
line�. The averages are taken for concentric landscapes.

FIG. 11. Spiral phase landscapes arising from the same coupling
strength g=0.9, the same assignment of natural periods, but from
different initial conditions. The landscapes do not seem correlated.
Lattice size 200
200.

FIG. 12. Mixed and concentric phase landscapes arising from
the same assignment of natural periods, but from different g. The
landscapes are strongly correlated. Lattice size 300
300.
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this phase singularity, the amplitude of the oscillation goes to
zero. In a discrete lattice, a stationary spiral tip may either be
placed between the oscillators or on one of the oscillators. In
the first case, the wave front circles a block of 2
2 oscilla-
tors, as shown in Fig. 21�a1�. We will say that the wave front
circles a point defect. In the second case, the wave front
circles a suppressed oscillator �i , j� that never fires �Fig.
21�b1��. The suppressed oscillator has a phase 0��ij ��−,
and when the four neighbors fire in consecutive order, �ij
jumps backward each time, since h��ij��0, so that the phase
is kept in this interval �Sec. IV D�.

Figure 14�a� shows the number of point defects in a set of
independent realizations of the system. The number de-
creases as g increases and becomes zero in most realizations
above g	0.6. Figure 14�b� shows average defect densities
for different lattice sizes. There is a weak tendency that the
defect density increases with the lattice size. The point de-
fects are identified in the following way: Each block of 2

2 oscillators is investigated. If we go around such a block
in a closed path and pass exactly one wave front, then there
is a point defect in the middle of that block. To judge how

many wave fronts we pass, the following time differences
between the firings of the oscillators in the block are calcu-
lated �cf. Eq. �5��:

�T1 = Ti,j − Ti,j+1,

�T2 = Ti,j+1 − Ti+1,j+1,

�T3 = Ti+1,j+1 − Ti+1,j ,

�T4 = Ti+1,j − Ti,j . �6�

If 
�Tk
	0.5p̄ for exactly one k, then we judge that the block
contains a point defect. It was checked in several simulations
that this method identifies the correct defects.

Figure 15�a� shows the number of quiescent oscillators in
a set of independent realizations. They seem to be improb-
able for coupling strengths below g	0.5 and above g	0.8.
The number of quiescent oscillators is essentially the same as
the number of spirals encircling an oscillator defect �see be-
low�. Figure 15�b� shows average densities of quiescent os-
cillators. There is no clear indication that this density de-
pends on the lattice size.

We also come across spirals with nonstationary tips.
Sometimes the tip circles a fixed open curve �Fig. 21�a2��.
This curve may be called a line defect and is typically not
straight, as shown in Fig. 16. In other cases, the spiral tip
circles a given row of quiescent oscillators over and over
again �Fig. 21�b2��. This row may be called a row defect. We
have come across spirals that rotate around curves consisting
of pieces both of line defects and row defects.

Above g	0.90, the few spirals we encounter are exclu-
sively of the nonstationary kind. It also seems that the length
of the line or row defect increases with g. This is seen in Fig.
17. The reason for these facts is discussed in Sec. IV D. It
seems that row defects are much more common than line
defects.

Line defects are most often not detected by the algorithm
used to find point defects �Eq. �6��, since they typically give

�Tk
	0.5p̄ for two different k. Since a row defect corre-

FIG. 13. Two kinds of global spiral topologies. �a� The wave
front emanating from the spiral tip �ring� collides with itself. �b�
The wave front emanating from the spiral tip collides with another
wave front.

FIG. 14. The number ndefects of point defects. �a� Ten realiza-
tions simulated for each g in a 100
100 lattice. �b� Average defect
densities in a sample of ten realizations for the lattice sizes
50
50 �dotted line�, 100
100 �dash-dotted line�, and 200
200
�solid line�. The averages are taken for those phase landscapes that
contain spirals.

FIG. 15. The number nquiescent of quiescent oscillators. �a� Ten
realizations simulated for each g in a 100
100 lattice. �b� Average
quiescent oscillator densities in a sample of ten realizations for the
lattice sizes 50
50 �dotted line�, 100
100 �dash-dotted line�, and
200
200 �solid line�. The averages are taken for those phase land-
scapes that contain spirals.
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sponds to a single spiral, the number of quiescent oscillators
in Fig. 15 slightly overestimates the number of stationary
spirals of this kind.

There are row defects that are not associated with spirals.
An example is shown in Fig. 18. We have only come across
such row defects in spiral landscapes. The reason may be
that their frequency is higher, so that the quiescent oscillators
can get pulses leading to backward phase jumps more often
and more easily are kept quiescent.

E. Hysteresis

The fact that the probability to get concentric and spiral
landscapes depends on coupling strength g �Fig. 4� opens the
possibility of hysteresis effects. Assume that we have a spiral
landscape acquired at some g. If we increase g gradually, it
should be more and more improbable that the landscape
stays on the spiral arm in Fig. 3. At some point it should
jump to the concentric upper arm. If we then slowly decrease
coupling, we should be able to stay on this arm. However, if
coupling is reduced further, at some point we should jump
down to the spiral arm again, since concentric landscapes
then become more improbable. If we repeat this procedure,
we should trace out a closed hysteresis curve over and over.
This scenario is confirmed in simulations. The jump from the
spiral to the concentric arm occurs at very high g. Depending
on the time interval �t between the changes in g, and the
magnitude 
�g
 of these changes, the jump occurs some-
where between g=0.96 and g=0.99. This shows that there is
a strong memory in the system, since it is very unlikely to
get a spiral landscape from random initial conditions for such

g. Indeed, we see that the sequence of spiral phase land-
scapes that are produced in the process are strongly corre-
lated. When high enough values of g are reached, we get
spiral landscapes that seem unstable, in the following sense.
If we fix g, the system does not reach a fully frequency
entrained state even if we allow a transient as long as 105 tu.
The phase landscape does not stabilize, and we see row de-
fects that change place and shape continuously. This effect
may be due to extremely long chaotic transients, reported in
other kinds of extended media �22�. It may also be that there
indeed exist nonfrequency entrained attractors in the fre-
quency entrained regime.

F. Other models

We study model �1� in the form a one-dimensional oscil-
lator chain with open ends, where each oscillator has the
same characteristics as in the two-dimensional case. In a one-
dimensional chain, no spirals are possible, of course �23�. In
the frequency entrained regime, we only find frequency en-
trained phase landscapes with one or more foci correspond-
ing to the states studied in Ref. �5�. The focus number de-
creases toward 1 as g→1. In contrast to the two-dimensional
case, the focus density seems to be independent of the lattice
size.

Figure 19�a� shows the mean period p̄ in a set of indepen-
dent realizations of the two-dimensional model with identical
oscillators �ij =1, ∀ij. All landscapes that appear are fre-
quency entrained. The points in the horizontal upper arm
correspond to coherent landscapes with p̄=1. The lower arm
corresponds to spiral landscapes. The curve apparently con-
verges to p̄=0.5 as g→1 �Sec. IV E�. Just as in the case of
diverse oscillators, the probability to get a spiral landscape
seems to decrease when g increases, but seems to increase as
the lattice size increases. Figure 19�b� shows the correspond-

FIG. 16. A spiral wave front moving around a line or row
defect.

FIG. 17. Row defects at three different values of g. Their length
seems to increase with g.

FIG. 18. A row defect that is not associated with a spiral. �a�–�c�
Time evolution of a wave front passing the defect. �d� A piece of a
phase landscape that contains this kind of defect.

J. E. STRÄNG AND P. ÖSTBORN PHYSICAL REVIEW E 72, 056137 �2005�

056137-8



ing values of q̄. Coherent landscapes have q̄=0, of course.
The points in the upper, visible arm correspond to spiral
landscapes. Below the dip at g	0.6, all spirals seem to
circle point defects, and above, they all seem to circle quies-
cent oscillators. No apparent correlations can be seen be-
tween spiral landscapes arising from the same g, the same
assignment of natural periods, but different initial conditions.

To test the behavior of a radically different oscillator
model, we study the system

�̇ij =
1

�ij
+ K �

kl�nij

���kl − �ij� , �7�

with ��x�=sin�2�x�+0.5 sin�2�x�2. This model is of the
universal form that arises in the limits of small coupling and
small oscillator diversity in any network of limit cycle oscil-
lators �2�. The choice of coupling function ��x� makes it
plausible that a frequency entrained regime exists even as
N→�, since this is the case in the corresponding one-
dimensional chain �6�. The natural periods are chosen in the
same way as in the original model �1�. Figure 19�c� shows p̄
for a set of independent realizations. Two arms separate at
K	0.8. Frequency entrainment settles at a slightly lower K.
Again, the points on the upper arm correspond to concentric
landscapes, and those on the lower arm correspond to spiral

landscapes. For lower values of the coupling strength, all
three landscape types can be seen. No spirals circling quies-
cent oscillators are possible �Sec. IV E�. Just as for system
�1�, the probability to get a concentric landscape seems to
decrease as the lattice size increases. In model �7�, it appar-
ently decreases much quicker. In fact, it is hard to get con-
centric landscapes from random initial conditions with a lat-
tice size larger than 15
15. �Though, they are consistently
produced from homogeneous initial conditions.� In contrast
to model �1�, however, we see no clear trend that the prob-
ability to get a concentric landscape increases with the cou-
pling strength. For this model, we define the local coherence
measure as

qij� = �min�
�ij − �kl
, 1 − 
�ij − �kl
��kl�nij
, �8�

letting q̄�= �qij� �. This measure is time independent in fre-
quency entrained states. Figure 19�d� shows this quantity in a
set of independent realizations. The points in the upper arm
correspond to spiral landscapes and those in the lower to
concentric landscapes. This arm approximately follows
q̄��K−1.1. Preliminary studies indicate that the correlation
pattern between different landscape types is the same as for
model �1� with diverse natural frequencies.

IV. THEORETICAL CONSIDERATIONS

A. Topological constraints

If �L is the lattice boundary, the integral ��L�� ·dl must
be zero if the boundary condition is periodic, whereas it can
take any integer value if open boundary conditions are used.
This means that the number of clockwise and anticlockwise
spirals �cf. Eq. �2�� must be the same in any phase landscape
with periodic boundary conditions and, in particular, that the
number of spirals must be even. No such constraints exist if
the boundaries are open.

If two spiral tips are connected by a wave front, the two
spirals must rotate in opposite directions. Otherwise the
wave front would have no distinct back and front side.
Therefore, if the boundary condition is periodic, each clock-
wise spiral is connected to an anticlockwise spiral, so that all
spirals form pairs. As time goes by, the specific spirals that
pair in this way may change, however. Look, for example, at
Fig. 13�b�, and imagine that each of the end points of the
wave fronts corresponds to a spiral tip. In the left panel, the
upper left spiral tip is connected to the tip marked by a ring.
In the right panel, when the two wave fronts have collided,
the lower left tip is connected to the ring.

B. Wave front collision

In a frequency entrained state, two wave fronts that col-
lide always annihilate. If they would pass through each other,
the firing interval of an oscillator close to the collision point
would be very small, as the forward and backward moving
fronts sweep over the oscillator at a small time interval. The
firing interval would then increase gradually as we move
away from the collision point. In other words, the firing in-
tervals would not all be the same, and there would be no
frequency entrainment.

FIG. 19. Behavior of alternative models. �a� Mean firing periods
p̄ for the system �1� with identical oscillators �ij =1, ∀ ij. �b� Local
coherence q̄ for the same model. �c� Mean firing periods p̄ for the
system �7� with random natural periods 1.0��ij �1.5. �d� Local
coherence q̄� for the same model. In all panels, ten independent
realizations are simulated for each coupling strength. In panels �a�
and �b�, the lattice size is 50
50, and in panels �c� and �d�, it is
15
15.
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There is nothing in model �1�, however, that a priori pre-
vents two wave fronts from passing each other or a wave
front moving backward to be created in the wake of a for-
ward moving wave front. In both cases, an oscillator a that
fires at time Ta and triggers a neighbor b to fire at Tb, must in
return be triggered by b to start a reverse wave. This can
happen if the time difference Tb−Ta is large enough so that
�a has grown larger than �+ �Fig. 1� at time Tb. Naturally,
this situation may occur if g is small �making Tb−Ta large�
and �+ is also small. It can be checked that a necessary
condition is �+�1/ �1+�min�max

−1 �1−g�−1�.

C. Entrained period and local coherence

We do not have a complete theory to explain the shape of
the curves p̄�g� �Fig. 3� and q̄�g� �Fig. 7� in the concentric
and spiral cases. However, we can account for some basic
facts.

In the following, we assume that in any observed en-
trained state, oscillators receive pulses only when their phase
belongs to one of the intervals �0,�−� and ��+ ,1�. Without
rigorous proof, we claim that the state would otherwise be
unstable �24�. We have ��=�+gh���, where � and �� are
the phases of an oscillator just before and after it receives a
pulse, respectively. A small phase perturbation �� thus
evolves according to ���= �1+gh�������, and it will grow if
h����	0. This is the case in the intermediate phase interval
��− ,�+�.

The entrained period p̄ decreases when g increases. This
is due to a basic asymmetry of the interaction in model �1�.
Namely, an oscillator 1 that fires before another oscillator 2
tends to advance the phase of 2 more than 2 retards the phase
of 1 �Fig. 20�. This asymmetry becomes more pronounced as
g increases. The net acceleration of the lattice increases and
p̄ decreases. In the limit g→1, a firing oscillator triggers an
immediate firing of all neighbors with phase ���+. The
firing oscillator will not be retarded at all.
Since this holds for all oscillators, we must have
limg→1 p̄��min=1. In a concentric landscape, there is a fo-
cus oscillator that may be retarded by its four neighbors, but
is not accelerated by any neighbor. Thus limg→1 p̄��min, so
that indeed limg→1 p̄=1. In a spiral landscape, the lower limit

of p̄ is set by the fact that the firing interval of an oscillator
k cannot be less than �+�k. This value is taken if it is per-
turbed at �k=�+. Since all oscillators frequency entrain, we
must have p̄��+�max=3/4.

The local coherence measure q̄ decreases toward zero as g
increases, at least in the concentric case �Fig. 7�. Basically,
q̄ is the mean time difference �T between firings of
neighbor oscillators �i , j� and �k , l�. Say that �i , j� fires before
�k , l�. The phase remaining after the advancing pulse
from �i , j� before the firing state of �k , l� is reached is
1−�kl� =1− ��kl+gh��kl��= �1−g��1−�kl�. We have �T
��max�1−�kl� �, and thus q̄ must decrease toward zero as
g→1. This is true for spiral states also, provided they exist
in this limit.

The entrained period p̄ tends to be lower for spiral land-
scapes than for concentric landscapes, whereas q̄ is higher.
There is a simple reason for this relationship. To reduce the
firing intervals more in spiral landscapes, the advancing
pulses must be received at smaller phases, on the average,
since the forward phase jumps gh��� then becomes larger.
However, the remaining phase 1−�� will then be larger, and
therefore, �T and q̄ will also be larger.

D. Spirals

In our terminology, a spiral tip always rotates around
some kind of defect. Figure 21 shows the basic defect types.
The type shown in row �c� has not been seen in the simula-
tions, but cannot be ruled out. The thickness of a layer of
quiescent oscillators can be two at the most, since all quies-
cent oscillators must abut an active oscillator in order to be
kept quiescent. These structures should be seen as building
blocks from which quite arbitrary defects can be constructed.
First, line and row defects are most often curved. Second, we

FIG. 20. Asymmetry of the interaction in model �1�. The phase
circle is shown at two consecutive times T1 and T2, and the phases
�1 and �2 of two oscillators 1 and 2 are marked. We have
��2=gh��2�T1�� and ��1=gh��1�T2��. If we assume that the natu-
ral periods �1 and �2 are equal, the phases move around the circle
with the same speed, and we get ��1=−�1−g���2 from Fig. 1. A
symmetric interaction would mean ��1=−��2.

FIG. 21. The basic types of defects around which a spiral tip
may rotate. Black cells correspond to quiescent oscillators. �a1� A
point defect. �a2� A line defect. �b1� A quiescent oscillator, an os-
cillator defect. �b2� A row of quiescent oscillators, a row defect.
�c1� A 2
2 block of quiescent oscillators. �c2� A 2
n block of
quiescent oscillators.
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have already mentioned that pieces of line and row defects
are sometimes joined to form longer defects �Sec. III D�.
Third, we have also seen row defects that branch off. Fourth,
it should be possible that defects form closed rings, although
this has not been observed yet. It is noteworthy that a hypo-
thetical ring of quiescent oscillators dynamically decouples
the lattice into two independent parts—the interior and exte-
rior of the ring.

Below, we try to account for the intervals of g in which
different types of spirals appear. First, we give qualitative
arguments, then we present some quantitative calculations.

The reason why spirals circling quiescent oscillators do
not appear for low enough coupling strength g is that the
quiescent oscillator must receive strong enough retarding
pulses from its neighbors, so that its phase is kept below �−
during one entrained period.

We see that spirals circling point defects disappear first as
g increases �Fig. 14�, then spirals circling an oscillator defect
�Fig. 15� disappear. Then the oscillator row defect circled by
the spiral apparently has to become longer and longer �Fig.
17� as g grows. The reason is the following: Consider the
ring of oscillators that the spiral tip runs through in consecu-
tive order. The time difference �T between the firings of
neighbor oscillators on this ring has to decrease toward zero
when g increases. The sum of all time differences should
equal p̄, but for high enough g this will no longer be pos-
sible. The longer the ring, the larger sum is possible. The
spiral can survive at a larger g. In the case of a point defect,
the ring of oscillators that the spiral tip runs through has
length four; in the case of an oscillator defect, it has length
eight; and if we are dealing with a row defect, the ring length
increases from ten with the length of the row defect.

Let us make these arguments quantitative. First, we con-
sider the lower bound for g in a row defect with M quiescent
oscillators. Let �Tk be the largest time difference between
successive pulses received by a quiescent oscillator k, and let
mk be the number of pulses received by k during the en-
trained period p̄. We have

�Tk � p̄/mk, ∀ k . �9�

To keep k in the phase interval �0,�−�, it is most favorable to
perturb it at phase �k=�−, since then the backward phase
jump gh��k�=−g�k is the largest. Then, we must perturb it
again within a time �kg�−, otherwise �k escapes the interval
�0,�−�. Thus, we must have

�Tk � �kg�−, ∀ k , �10�

or g� p̄ / �mk�k�−� from Eq. �9�. Let m be the minimum mk

in the row. Then, we have to require g� p̄ / �m�k�−�. Since
p̄��max�+, we get the lower bound

g �
�+

m�−
. �11�

For an oscillator defect, we have m=4; for a straight row
defect of length M =2, we have m=3; and for a longer
straight row defect, we have m=2.

Consider now the upper bound for different spiral types.
Label the oscillators in the ring 1 ,2 , . . . ,n and let them fire at
times T1�T2� ¯ �Tn�T1+ p̄ �Fig. 22�. Then define
�Tk=Tk+1−Tk, with �Tn=T1+ p̄−Tn. Let �k

b be the phase of
oscillator k just before k−1 fires. We have

�Tk−1 � �k�1 − ��k
b + gh��k

b��� = �k�1 − g��1 − �k
b� .

�12�

The inequality should be an equality if no neighbor to k
outside the ring fires between k−1 and k, and a strict inequal-
ity if some neighbor does fire. Since we must have �k

b	�+,
it follows that

�Tk−1 � �max�1 − g��1 − �+�, ∀ k . �13�

For some j, we must have �Tj � p̄ /n, and since p̄��max�+,
we may write

∃ j, �Tj � �max�+/n . �14�

Taken together, Eqs. �13� and �14� imply

g � 1 −
�+

n�1 − �+�
. �15�

Equations �11� and �15� express upper and lower bounds
for the g intervals in which different types of spirals occur.
The actual intervals are more narrow. More accurate upper
limits of g can be estimated by ignoring the rest of the lattice,
treating the ring in Fig. 22 as a one-dimensional lattice with
periodic boundary condition. For each k, we have

�k = p̄ + g�1 − g�−1�Tk−1 − g�Tk �16�

�with �T0��Tn�. Summing all n equations and using

p̄ = �
k

�Tk, �17�

we get

�
k=1

n

�k = �n + g2�1 − g�−1�p̄ . �18�

We see that this equation only has allowed solutions for
small enough g, otherwise p̄ becomes smaller than the mini-

FIG. 22. The oscillator ring that the spiral tip runs through. The
interior may contain a point defect, an oscillator defect, a row de-
fect, or possibly a line defect.
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mum allowed value �1−g�1−�+��max��k�. To maintain p̄
large as g increases, all �Tk should be maintained large,
according to Eq. �17�. To do this, �k

b has to decrease, accord-
ing to Eq. �12�. The maximum allowed g is thus the one for
which �Tk=�k�1−g��1−�+� for each k. Inserting this ex-
pression in Eq. �18�, again using Eq. �17�, we get

g � n/2 ± �n2/4 − n + �1 − �+�−1. �19�

In this way, we obtain g�2−�2	0.59 for spirals circling a
point defect �n=4�, and g�4−�10	0.84 for spirals circling
an oscillator defect �n=8�. These values are in good agree-
ment with the numerical data �Figs. 14 and 15�.

In Eq. �15�, we see that the length n of the ring that the
spiral tip runs through �Fig. 22� has to increase as g grows
toward 1. An interesting question is whether spiral land-
scapes are possible in the limit g→1. Then the length of the
line or row defects must diverge. We see no reason why this
is cannot happen for line defects, but below we show that
spirals circling row defects are impossible above a certain
value of g.

Consider a quiescent oscillator k at one end of the row
defect �Fig. 23�. It gets three retarding pulses as the wave
front passes. Then it has to wait until the front returns before
it gets another retarding pulse. The critical condition is that
this time interval I has to be small enough so that �k does not
grow larger than �− in the meantime. We have to require
I��−�k��−�max. We have I= p̄− ��T1+�T2+�T3+�T4�.
From Eq. �12�, we have �Tj ��max�1−g��1−�+�. Since
p̄��+�max, we may write I��+�max−4�max�1−g��1−�+�.
Using I��−�max, we get g�1− �1/4���+−�−��1−�−�−1.
For our parameter values, we get g�0.95.

E. Other models

In the case of identical oscillators, �ij =1, ∀ ij, the
spiral landscapes acquire the minimum possible period
p̄=�+�max=0.5 in the limit g→1, just as in the case of di-
verse oscillators �cf. Sec. IV C�. It is easy to see that there is
always a coherent state with p̄=�ij =1. However, one may
ask if there are concentric landscapes with foci. This can be
excluded by the following argument. If there is a focus, then
there is an oscillator that is retarded by some neighbors and
not accelerated by any. Thus, p̄	1. But if there is a focus,
for topological reasons there must also be an “antifocus,” an

oscillator that is accelerated by some neighbors, but not re-
tarded by any. Therefore, p̄�1, and we have a contradiction.
The absence of concentric landscapes with foci explains the
absence of spiral landscapes correlated to such landscapes.
For periodic boundary conditions it is strictly true that there
cannot be any correlations, since then all oscillator sites are
equivalent, and no preferred spiral position can exist.

Let us explain some of the differences between models �1�
and �7� �Fig. 19�. For the latter model, there is no tendency
that p̄ in concentric landscapes approaches �min=1 as K in-
creases, whereas this is bound to happen in model �1� �Sec.
IV C�. For any given K, we can adjust the phase differences
�kl−�ij between neighbor oscillators so that �̇ij takes
any desired value in the range ��ij

−1+K� min���x��,
�ij

−1+K� max���x���. The width of this interval clearly
grows without bound as K increases. For concentric land-
scapes, however, we must have �min� p̄��max. For our
choice of ��x�, there will be a focus oscillator that is always
retarded, so that p̄	�min, and an antifocus oscillator that is
always accelerated, so that p̄��max. In a similar way, the
phase differences do not have to decrease as K grows, in
contrast to model �1�, where we approach the coherent state
as g→1 �Fig. 20�. Consequently, we see that the local co-
herence measure q̄� does not decrease for spiral landscapes
as K increases.

The fact that the phase differences do not have to decrease
means that there is no value of K above which spirals cir-
cling point defects are impossible. In contrast, oscillator de-
fects are absent altogether. The concept of a “quiescent os-
cillator” is meaningless, since there is nothing special with
�ij =0 in model �7�. Equation �7� is left invariant if we shift
the frequency zero by an arbitrary amount �, i.e., if we make
a change of variables �ij� =�ij +�t and �ij� =�ij +� for all
�i , j�.

V. DISCUSSION

Maybe the most fundamental question raised in this study
is whether a partly coherent phase exists in the thermody-
namic limit N→�. Our results indicate that this is not the
case in our model. This conclusion is based on two findings.
The first is that the wavelength is independent of lattice size
�Fig. 8�. The second is that the focus density in concentric
landscapes drops when the lattice size increases �Fig. 10�.
Let us discuss why these properties make a coherent phase
less probable. Figure 24 shows associated firing times T in a
medium with a continuous space variable x. The local
minima correspond to foci. The gradient 
dT /dx
 corresponds
to q̄. If the curve is contained in an interval DT that is
smaller than p̄, then partial coherence is expected. If the
focus density is independent of lattice size, then DT and the
degree of coherence may also be independent of lattice size,
and a partly coherent phase is possible. Then we can choose
a large enough g�1, so that q̄ becomes small enough and
DT� p̄. If we then let N→�, we will have a partly coherent
state. In contrast, if the density decreases �lower curve�, then
DT will increase with N for a given g and q̄. The degree of
coherence decreases. If the focus density �→0 as N→�,
then we can rule out a partly coherent phase. However, if it

FIG. 23. Illustration that helps understand the argument why
row defects are forbidden for high enough g. �Tj =Tj+1−Tj, where
Tj is the firing time for oscillator j and j=1,2 ,3 ,4 ,5.
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stabilizes at a small nonzero value, we cannot be certain. But
this does not guarantee the existence of a coherent phase.
Figure 24 shows an idealized situation where dT /dx is con-
stant and the foci are evenly spaced. If this is not the case, it
is probable that T�x� will show diffusion-like properties and
will not be bounded as x→�.

Another significant finding, in our view, is the way the
probability to get concentric and spiral landscapes depends
on lattice size N and coupling strength g �Fig. 4�. In Sec.
III E, we discuss how this leads to hysteresis effects. This
behavior may be of importance in relation to sinus node
reentry �Sec. I�. The sudden frequency increase and the cir-
cular excitation waves seen in this syndrome suggests that it
corresponds to the appearance of a spiral landscape within
the sinus node. It may then be possible to return to a healthy
concentric landscape by making use of the hysteresis.
Namely, we may gradually increase intercellular coupling to
the point where the system spontaneously jumps to a concen-
tric state, and then gradually reduce coupling back to normal
values, staying on the concentric arm �Fig. 3�. �Methods to
alter coupling are discussed, e.g., in Ref. �25�.�

There is, however, a potential hazard with this scheme. If
we are unable to raise coupling high enough, we may be-
come stuck in the apparently nonfrequency entrained spiral
landscapes appearing for very high g, described in Sec. III E.
Why do these landscapes appear? Since row defects are
much more common than line defects, the system typically
displays stable row defects before entering the very high
coupling regime. Now, in Sec. IV D, we show that row de-
fects are forbidden in frequency entrained states for
g	0.95. Since the system has a memory of row defects, for
higher g the system might, therefore, approach a nonfre-
quency entrained state containing nonstationary row defects.
We cannot rule out that these states correspond to very long
chaotic transients.

Let us briefly discuss why the sinus node may end up in a
spiral landscape in the first place. The autonomous nervous
system innervates the sinus node and controls heart rate
through release of acetylcholine and norepinephrine at the

nerve endings. Sudden changes in the concentration of these
neurotransmitters ought to “shake” the system, leaving it far
from a stable frequency entrained state. It may then be at-
tracted to a new stable state, possibly a spiral landscape.
Abnormally weak intercellular coupling within the node
may, therefore, facilitate the appearance of sinus node reen-
try, since spiral states then become more probable �Fig. 4�.

Although we are not aware of any other systematic study
of waves in discrete oscillatory media, there has been a lot of
effort to understand spiral waves in discrete excitable media.
In particular, the phenomenon of spiral wave breakup has
been studied in detail, since it is a possible cause of fatal
cardiac arrhythmia �26,27�. The resulting wave patterns are
typically disordered and aperiodic in both space and time. In
contrast, we typically see wave patterns that are spatially
disordered �Fig. 2�c��, but perfectly periodic in time. Of
course, in the nonfrequency entrained regime, we see solu-
tions that are temporally aperiodic as well. Then, spiral tips
are often stationary for a long time and then suddenly move.
In an excitable medium, there can be no asymptotic solution
containing concentric waves �unless external pacing is intro-
duced�. On the other hand, the static solution where the me-
dium is at rest does not exist in our system. An oscillator can
only be kept quiescent by a nearby, active oscillator. This
fact makes extended inactive spiral cores impossible �Fig.
21�, even if they are often seen in excitable media �28�.

One may ask which of the observed properties are due to
the fact that the oscillators have heterogeneous natural peri-
ods. First, as noted in Sec. III F, if the oscillators are identi-
cal, all observed states are frequency entrained, regardless
the coupling strength g. Second, there appear no concentric
landscapes �Sec. IV E�. Their role is played by coherent
landscapes �with q̄=0�. The question whether partial coher-
ence is possible for finite g�1 in the thermodynamic limit
N→� becomes superfluous, since coherent landscapes exist
for any N. However, it seems that the probability to get a
coherent landscape for random initial condition is neverthe-
less zero in the limit N→� �cf. Fig. 4�. A third difference is
that there are no correlations between phase landscapes ob-
tained for different g or different random initial conditions.
This is because there are no variations in a fixed natural
period landscape to which the phase landscape can correlate.
An important similarity between heterogeneous and homoge-
neous lattices is that the probability to get spiral or nonspiral
landscapes seems to depend in the same way on g and N.
Also, the possible spiral types are the same.

Our findings are of interest mainly if they are fairly model
independent. The Kuramoto-like model �7� that we simulated
for comparison showed some similarities and some differ-
ences. However, we may argue that our model, with a diffu-
sive, pulse-like interaction that tends to decrease phase and
frequency differences, is more similar to real oscillator net-
works, at least to those in the biological applications. Fur-
ther, model �7� is the universal form of an oscillator network
in the low coupling limit, whereas this study deals with the
high coupling regime. A good test to determine the generality
of the results could be to study the Winfree model in the
form used by Ariaratnam and Strogatz �3�, where our
PRC �Fig. 1� is replaced by −sin�2��� and the delta
spike interaction ���� is replaced by the smooth function
1+cos�2���.

FIG. 24. Illustration of the coherence discussion. We can asso-
ciate two firing events, at times Ta and Tb, of neighbor oscillators a
and b, if one event triggers the other. In the one-dimensional case,
we can form a chain of associated firing times T. In a continuous
version of the medium, this chain forms a curve T�x�. See text for
further explanation.
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