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We simulate two-dimensional lattices of pulse-coupled oscillators with random natural frequencies, resem-
bling pacemaker cells in the heart. As coupling increases, this system seems to undergo two phase transitions
in the thermodynamic limit. First, the largest cluster of frequency entrained oscillators becomes macroscopic.
Second, all oscillators frequency entrain, except possibly some isolated ones. Between the two transitions, the
system has features indicating self-organized criticality. To our knowledge, the first transition and the interme-
diate phase have never been observed before. It remains to be seen if they are generic for large lattices of limit
cycle oscillators.
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Many systems in science, engineering, and social life catrainment settles and jumps discontinuously from zero to
be described as large networks of coupled limit cycle oscil-one. In this paper, a two-dimensional square lattice with bi-
lators [1]. Most often there is a spread in the individual, directional nearest neighbor coupling is studied. Two phase
natural frequencies, and the coupling is such that it tends ttransitions at the critical couplingg.; and g., are found.
even out these frequency differences. A general question iShe order parametar seems to become nonzerogy. At
how the dynamics of such systems changes when the cogy,, r becomes very close to one, when all oscillators en-
pling between the oscillators increases. Is there a phase tratrain, except possibly some isolated ones. Note that we can
sition at which the oscillators attain a common, collectiveonly have one phase transition in a one-dimensional lattice.
frequency, in the thermodynamic limit where the numbler States with 6<r<1 are impossible, since then a nonzero
of oscillators goes to infinity? density of oscillators in the chain are not entrained with the

Such phase transitions are relevant in several fields. Fgsresumed infinite cluster, and these necessarily cuts the infi-
example, the proper function of the®6f pacemaker cells in  nite cluster into finite parts, so that we are left with a state
the sinus node in the heart requires that they work at thevherer=0.
same frequency. Cardiac arrhythmias may result if this is not In our model(cf. Ref. [9]), the state of oscillatok is
the cas€2]. The appearance of several frequencies in thegjiven by the phasep,[0,1). The time evolution of the
sinus node may be caused by decoupling due to tissue dghase is given by
generation. The brain also contains many pacemaker cells.

Increasing evidence suggests that enhanced electric coupling S

between neighbor neurons can provoke epileptic seiGiles $i= 1Pt gh(¢k)|§k o), )
These correspond to pathologically large regions of synchro-

nized electric discharges. whereP, is the natural period of oscillatdcandn, is the set

Most theoretical studies of phase transitions to collectiveof its nearest neighbors. An oscillatbis said to fire when
oscillations assume that each oscillator is coupled to all theb,=1. Then,—0 and a pulse is delivered to the neighbor
others, equally strong. The most well-known system of thisk, so that its phase immediately shifts accordingfte— ¢y
kind is the Kuramoto mode[4]. More realistic networks +gh(¢,). This kind of system can model oscillators that
have local coupling. Winfre€5] and Kuramotd 6] hypoth-  interact with short pulses and are strongly attracted to their
esized that in systems with nearest neighbor coupling antimit cycles. The functiongh(¢,) is called the phase re-
random natural frequencies, there should be a critical cousponse curvéPRQO, whereg is the coupling strength. In-
pling strength at which the number of members, or sizespired by experiments on pacemaker cells in the Ha#xf
Smax, Of the largest cluster of frequency entraif@d oscil-  we assume the form of the PRC given in Fig. 1. This cou-
lators becomes macroscopic. This can be expressed aspling tends to even out phase and frequency differences be-
phase transition at which the order parameteecomes non-
zero, where hio)

0.5
r=lim Sy .x/N. (1)
N—ce 0.4I .
i

0.5
For a long time, model studies only revealed negative or -04~|~\/
inconclusive results regarding the existence of such a phase '
transition [8]. Recently, we proved that it is present in @  FiG. 1. The shown functioh() times the coupling constagt
one-dimensional chain of pulse-coupled oscillators where thg the PRC used in systert?). From the requirement €¢
natural frequencies have finite bandwidi€. A critical cou-  +gh(¢$)<1, we haveg<1. As discussed in Ref9], g=1 corre-
pling strengthg. was found, at which global frequency en- sponds to infinite coupling.
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FIG. 3. (8) The number of cluster® (S) with size equal to or
larger thanS as a function ofSfor different coupling strengthg in
double logarithmic scale. The data are taken from the systems
shown in Fig. 2. The distribution is subcritical fgr= 0.4, approxi-

; q 5 ¥ mately critical forg=0.51, and close to critical also fag=0.53
g=051 (1.082,1.105)  g=053 (1.072,1.080) andg=0.54, if the largest clusters are disregardd).Estimations
T of gc.1(N) and ge,(N) with accuracyAg=0.005, using a single
realization.

=0, the mean periods are the natural periods, which are in-
dependent random numbers. As we incregselusters of
oscillators with nearly identical mean periods appear, as can
be seen fog=0.40. The typical size of these clusters in-
creases witlg. At g=0.51, one cluster is almost percolating
B e horizontally, indicating that this coupling is close to the criti-
g=0.35 {1:063; 1.075) cal valueg;. At g=0.53 andg=0.54, one cluster is perco-
lating through the lattice. This cluster can be interpreted as
X500 oscillators for different coupling strengthsThe couplings macroscopic, suggesﬂ_ng that_ we have entered phase 2. For
g=0 andg=0.40 belong to phase 1 where there are only micro-9=0.55, the gnnre lattice attains Fhe same frequency, gxcept
scopic frequency entrained clusters.git 0.51, we are close to the fOr @ few oscillators that never fire(0.05%), suggesting
critical valueg,;, where one cluster starts to dominate. The cou-that we have entered phase 3. The silent oscillators that never
plings g=0.53 andg=0.54 belong to phase 2, with one percolat- fire during the measurement interval start to appear around
ing, macroscopic cluster. Aj=0.55, we have reached phase 3, g=0.48.
where all oscillators frequency entrain, except for some silent os- To locateg.; more precisely, we study how the distribu-
cillators (blue dots. The color codes for the mean periBdn such  tion n(S) of cluster sizesS depends org. A cluster is nu-
a way that deep red corresponds to sni®at P_ and deep blue to  merically defined to be a connected set of oscillators whose
largeP=P . In each panel, the color scale is given & (P.). mean periods differ less thashP=0.001. The results are
shown in Fig. 8a). The distribution is sub-critical for low
tween oscillators for the following reason: If the phageof  values ofg, but the size of the largest cluster steadily in-
an oscillatork receiving a pulse from a neighbbis small, it creases withg. At g=0.51, the distribution becomes ap-
becomes even smalleh€0), approachingp,=0. If ¢, is  proximately critical,n(S)=S™ ", suggesting thag.; is close
large, it becomes even largent 0), again approaching,.  to 0.51. The same evolution ofS) with g is seen in other
The natural period®\ are taken as random numbers from realizations of the system, i.e., when the assignment of natu-
a square distribution with,;;=1 andP,,=1.5 t.u.(time  ral periods and the initial conditiofphases at time zerare
units). We use periodic boundary conditions. The samechanged. The uncertainty @, is then seen to be-0.005.
method of numerical integration as in R@®] is used. The Subtracting one from the slope in the cumulative plots, we
lattice is divided into blocks of 1810 oscillators, within  always get the critical exponent=2, but the fluctuations
which the integration is exact. These correspond to the segrre too large to determine a more exact value.
ments of 25 oscillators within which the integration was ex-  In phase 2, atj=0.53 andg=0.54, we interpret the clus-
act in Ref.[9]. ter size distributions still to be critical. To do so, we have to
The two phase transitions separate three phases. We shajclude the largest clusters, which are too large to fit in, and
say that we are in “phase 1” wheg<g.;, that we are in  the smallest, which are too many. The latter is not surprising,
“phase 2" wheng.;<g<g,, and that we are in “phase 3" since scale invariance is never expected to hold on the small-
when g>g.,. Figure 2 shows mean periods in a lattice of est scales. For the larger clusters, we never see that the dis-
500x 500 oscillators measured during“10u. after a tran- tribution bends downwards in the double logarithmic plots
sient of 10 t.u. for different coupling strengthg. For g [cf. Fig. 3@)], indicating subcriticality. In some realizations

g=0.54 (1.063, 1.075)

FIG. 2. (Color) Mean period landscapes in a lattice of 500
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of phase 2, the size difference between the largest clusters_ T, =150000tu.
that must be disregarded and the smaller ones is not so large® S w&
as in Fig. 3a). Then, the critical part of the distribution ex- A
tends further up in size(ln fact, we do not always see a
percolating cluster in phase 2, maybe due to finite time ef-
fects. However, the largest clusters are always larger than
they would be if all cluster sizes were critically distributed.
From this evidence, we hypothesize that the entire phase 2 is
critical. This is further supported by the fact that the features
described above are robust with respect to the cluster dis-
crimination parameterdP. Self-organized criticality has
been observed previously in lattices of pulse-coupled oscil-
lators with diverse natural frequenci¢$l], where it ap-
peared as critically distributed avalanches of simultaneous
firings. The question of frequency entrainment was not ad- FIG. 4. Evolution of mean period landscapes in a lattice of
dressed in that study. In our model, such avalanches argp0x 300 oscillators forg=0.40 (top row), belonging to phase 1,
however, impossible, since waves of firings propagate wittand g=0.525 (bottom row, belonging to phase 2. The clusters
finite speed wheneveg<<1. seem stable in phase 1 and unstable in phase 2. The mean periods
To confirm the existence af.; andg.,, one should ide- were measured during 41@.u., starting from different timed,.
ally determine their magnitude as a functionfand see The color scale is given in brackets in the same way as in Fig. 2, but
whether they converge to finite, separate valuesNas~.  here white corresponds to sméland black to largeé.

Figure 3b) shows estimations ofic;(N) and ge(N) with 644 of the initial condition. In phase 3, the position and exact
accuracyAg=0.005, using a single realization for eabh  mper of silent oscillators depend on the initial condition.
More realizations indicate that the spread of the critical valjowever, we stress that tretatistical properties of the sys-
ues is similar tCAg for N:5002, i.e., COI’lSideI’ab|y less than tem seem to depend 0n|y (g“n the thermodynamic ||m|t,
dc2(N) —gc1(N). The shape of the curves in Figb sup-  and not on the initial condition or the assignment of natural
port the hypothesis that the critical couplings converge tqeriods.
separate finite values. Since a critical coupligg= \2/3 The mean period of an oscillator is defined as the mea-
~0.82 for global frequency entrainment was shown to exissurement timeAT—oco. The instability of the clusters in
in the corresponding one-dimensional lattif®], we are phase 2 indicates that these numbers, if they exist, could be
strongly inclined to believe that a finitg,,<0.82 exists in  very different from the mean periods that we measure during
two dimensions, since increased connectivity facilitates the finite time (10 t.u.). We can imagine three possibilities:
appearance of order. Therefore, the most important observat) The mean periods do not exi$g) they exist and are the
tion in Fig. 3b) is thatg.,(N)—g.1(N) does not seem to same for all oscillators, an@®) they exist and are different. If
decrease aBl increases, suggesting that; is indeed lower frequency clusters appear and disappear at completely ran-
thang,,, and that phase 2 exists in the thermodynamic limitdom places in the network as time passes, then alternative
N—oo. It should also be checked that a lattice in phase Zwo could be true. If not, we could have alternative three.
remains in this phase and does not converge to phase 3 @&ben, one could ask how the mean period landscape would
t—oo. To do so, we simulate a lattice of 38@00 oscillators ook like. There might no longer be a macroscopic, percolat-
atg=0.525 for very long time (4.4 10° t.u.). After a tran-  ing cluster. If this is the case, or alternatii® or (2) is true,
sient of about 1.5 10 t.u., the standard deviation of the one has to assume a finiteT to say that 6<r <1 in phase 2.
mean period distribution in the lattice does not show any Figure 5 shows distributions(P) of the mean periodP
tendency to decreageot shown, so that the lattice indeed for different values ofg. It is seen that the maximum shifts
does not approach phase 3. towards smaller values oP as g increases. For a one-
Mean period landscapes from this long simulation indimensional chain, it was shown that the entrained period
phase 2 are shown in the bottom row of Fig. 4. The clustewas always that of the fastest oscillator in the thermody-
configuration never seems to stabilize. This is consistent witmamic limit [9]. The same could very well be true here, in
the hypothesis that the entire phase 2 is critical, since thewhich case the spike of the distribution would be placed at
the system should have infinite transient time. The upper ro?=1 for g>g., (or maybe already fog>g.;). Above g
of Fig. 4 shows mean periods in the same lattice Jor =0.45, the distribution becomes progressively asymmetric,
=0.40 (in phase ]}, calculated at corresponding times. It is with a wider and wider tail of long periods. As seen in Fig.
seen that the positions of the clusters remain essentiall§(c), this tail approximately obeys a power law(P) (P
fixed. This seems always to be the case in phase 1. Arelated Py) X in phase 2, withy~2. The appearance of oscilla-
instability in phase 2 is that given the assignment of naturators with long mean periods parallels the appearance of com-
periods, the mean period landscapes at a given time from twpletely silent oscillators, mentioned previously. It is seen that
simulations with different initial conditions look very differ- oscillators with very long mean periods most often fire with
ent. This would make the landscape in phase 2 sensitive toormal intervals, but also experience very long periods of
external perturbations. In contrast, in phase 1 the systersilence, appearing as intermittent “bursts.” Abogg,, the
seems to approach the same mean period landscape regatait in n(P) disappears.
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transitions, the system seems critical, with power law cluster
size distributiom(S)«S™ " for the microscopic clusters, and
unstable cluster configuration. In this phase, there seems to
be a large tail P—Py) X of slow oscillators in the distribu-
tion n(P) of mean period®. The critical exponents and y
are both close to 2. However, we are not able to present a list
of the relevant critical exponents for this system. We cannot
say whether the order parameterincreases continuously
from zero or not in phase 2, due to the large fluctuations of
the size of the macroscopic cluster, both between different
FIG. 5. Distributionsn(P) of mean period® in a lattice of size  realizations, and as time passes. If it does, the first transition
500X 500. (a) Linear scale, normalized heights. The rightmost peakcould be called second order. The fact that the tail of slow
corresponds t@=0.30, and going to the left we haw@=0.40,  oscillators inn(P) seems to develop continuously as we pass
0.45, 0.51, 0.53, and 0.54b) Corresponding distributions in loga-  throughg,, support this hypothesis. The second phase tran-
rithmic scale (c) The long period tails in double logarithmic scale. gjion seems to be first order in the sense that the cluster size
arger thanp. The dash-doted ine cortesponds o 0.40. the . distibuion suddenly collapses gty just ke the tail of
dashed tog=0.51, the dotted tay=0.53, and the solid tay §Iow oscnla'tors.' However, the transitions cannot be of t.rgdl-
=0.54. For the two latter couplings in phase 2, the tails follow ational type_ if _'t IS t_rue that they are separated by a critical
power law. phase. This is a first account of these phenomena. Future
studies should establish the properties of the transitions in
o more detail and investigate the conditions for their appear-
~In'summary, we have found strong indications for the ex-gnce with regard to the oscillator model and the distribution
istence of two phase transitions in a large two-dimensionaks hatyral periods.
oscillator lattice with diverse natural frequencies. First, one
frequency entrained cluster becomes macroscopic. Second, We thank Martin Folkesson for making the initial simula-
almost all oscillators frequency entrain. Between the twations in this study.
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