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Phase transitions towards frequency entrainment in large oscillator lattices

Per Östborn, Sven Åberg, and Gunnar Ohle´n
Division of Mathematical Physics, Lund University, S-221 00 Lund, Sweden

~Received 5 February 2003; published 22 July 2003!

We simulate two-dimensional lattices of pulse-coupled oscillators with random natural frequencies, resem-
bling pacemaker cells in the heart. As coupling increases, this system seems to undergo two phase transitions
in the thermodynamic limit. First, the largest cluster of frequency entrained oscillators becomes macroscopic.
Second, all oscillators frequency entrain, except possibly some isolated ones. Between the two transitions, the
system has features indicating self-organized criticality. To our knowledge, the first transition and the interme-
diate phase have never been observed before. It remains to be seen if they are generic for large lattices of limit
cycle oscillators.
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Many systems in science, engineering, and social life
be described as large networks of coupled limit cycle os
lators @1#. Most often there is a spread in the individua
natural frequencies, and the coupling is such that it tend
even out these frequency differences. A general questio
how the dynamics of such systems changes when the
pling between the oscillators increases. Is there a phase
sition at which the oscillators attain a common, collecti
frequency, in the thermodynamic limit where the numberN
of oscillators goes to infinity?

Such phase transitions are relevant in several fields.
example, the proper function of the 106 of pacemaker cells in
the sinus node in the heart requires that they work at
same frequency. Cardiac arrhythmias may result if this is
the case@2#. The appearance of several frequencies in
sinus node may be caused by decoupling due to tissue
generation. The brain also contains many pacemaker c
Increasing evidence suggests that enhanced electric cou
between neighbor neurons can provoke epileptic seizures@3#.
These correspond to pathologically large regions of synch
nized electric discharges.

Most theoretical studies of phase transitions to collect
oscillations assume that each oscillator is coupled to all
others, equally strong. The most well-known system of t
kind is the Kuramoto model@4#. More realistic networks
have local coupling. Winfree@5# and Kuramoto@6# hypoth-
esized that in systems with nearest neighbor coupling
random natural frequencies, there should be a critical c
pling strength at which the number of members, or s
Smax, of the largest cluster of frequency entrained@7# oscil-
lators becomes macroscopic. This can be expressed
phase transition at which the order parameterr becomes non-
zero, where

r[ lim
N→`

Smax/N. ~1!

For a long time, model studies only revealed negative
inconclusive results regarding the existence of such a ph
transition @8#. Recently, we proved that it is present in
one-dimensional chain of pulse-coupled oscillators where
natural frequencies have finite bandwidth@9#. A critical cou-
pling strengthgc was found, at which global frequency en
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trainment settles andr jumps discontinuously from zero to
one. In this paper, a two-dimensional square lattice with
directional nearest neighbor coupling is studied. Two ph
transitions at the critical couplingsgc1 and gc2 are found.
The order parameterr seems to become nonzero atgc1. At
gc2 , r becomes very close to one, when all oscillators e
train, except possibly some isolated ones. Note that we
only have one phase transition in a one-dimensional latt
States with 0,r ,1 are impossible, since then a nonze
density of oscillators in the chain are not entrained with
presumed infinite cluster, and these necessarily cuts the
nite cluster into finite parts, so that we are left with a sta
wherer 50.

In our model ~cf. Ref. @9#!, the state of oscillatork is
given by the phasefkP@0,1). The time evolution of the
phase is given by

ḟk51/Pk1gh~fk! (
l Pnk

d~f l !, ~2!

wherePk is the natural period of oscillatork andnk is the set
of its nearest neighbors. An oscillatorl is said to fire when
f l51. Then,f l→0 and a pulse is delivered to the neighb
k, so that its phase immediately shifts according tofk→fk
1gh(fk). This kind of system can model oscillators th
interact with short pulses and are strongly attracted to th
limit cycles. The functiongh(fk) is called the phase re
sponse curve~PRC!, whereg is the coupling strength. In-
spired by experiments on pacemaker cells in the heart@10#,
we assume the form of the PRC given in Fig. 1. This co
pling tends to even out phase and frequency differences

FIG. 1. The shown functionh(f) times the coupling constantg
is the PRC used in system~2!. From the requirement 0<f
1gh(f),1, we haveg,1. As discussed in Ref.@9#, g51 corre-
sponds to infinite coupling.
©2003 The American Physical Society04-1
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tween oscillators for the following reason: If the phasefk of
an oscillatork receiving a pulse from a neighborl is small, it
becomes even smaller (h,0), approachingf l50. If fk is
large, it becomes even larger (h.0), again approachingf l .

The natural periodsPk are taken as random numbers fro
a square distribution withPmin51 andPmax51.5 t.u.~time
units!. We use periodic boundary conditions. The sa
method of numerical integration as in Ref.@9# is used. The
lattice is divided into blocks of 10310 oscillators, within
which the integration is exact. These correspond to the s
ments of 25 oscillators within which the integration was e
act in Ref.@9#.

The two phase transitions separate three phases. We
say that we are in ‘‘phase 1’’ wheng,gc1, that we are in
‘‘phase 2’’ whengc1,g,gc2, and that we are in ‘‘phase 3
when g.gc2. Figure 2 shows mean periods in a lattice
5003500 oscillators measured during 104 t.u. after a tran-
sient of 105 t.u. for different coupling strengthsg. For g

FIG. 2. ~Color! Mean period landscapes in a lattice of 50
3500 oscillators for different coupling strengthsg. The couplings
g50 andg50.40 belong to phase 1 where there are only mic
scopic frequency entrained clusters. Atg50.51, we are close to the
critical valuegc1, where one cluster starts to dominate. The co
plings g50.53 andg50.54 belong to phase 2, with one percola
ing, macroscopic cluster. Atg50.55, we have reached phase
where all oscillators frequency entrain, except for some silent
cillators ~blue dots!. The color codes for the mean periodP in such
a way that deep red corresponds to smallP<P2 and deep blue to
largeP>P1 . In each panel, the color scale is given as (P2 ,P1).
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50, the mean periods are the natural periods, which are
dependent random numbers. As we increaseg, clusters of
oscillators with nearly identical mean periods appear, as
be seen forg50.40. The typical size of these clusters i
creases withg. At g50.51, one cluster is almost percolatin
horizontally, indicating that this coupling is close to the cri
cal valuegc1. At g50.53 andg50.54, one cluster is perco
lating through the lattice. This cluster can be interpreted
macroscopic, suggesting that we have entered phase 2
g50.55, the entire lattice attains the same frequency, exc
for a few oscillators that never fire (,0.05%), suggesting
that we have entered phase 3. The silent oscillators that n
fire during the measurement interval start to appear aro
g50.48.

To locategc1 more precisely, we study how the distribu
tion n(S) of cluster sizesS depends ong. A cluster is nu-
merically defined to be a connected set of oscillators wh
mean periods differ less thandP50.001. The results are
shown in Fig. 3~a!. The distribution is sub-critical for low
values ofg, but the size of the largest cluster steadily i
creases withg. At g50.51, the distribution becomes ap
proximately critical,n(S)}S2t, suggesting thatgc1 is close
to 0.51. The same evolution ofn(S) with g is seen in other
realizations of the system, i.e., when the assignment of n
ral periods and the initial condition~phases at time zero! are
changed. The uncertainty ingc1 is then seen to be'0.005.
Subtracting one from the slope in the cumulative plots,
always get the critical exponentt'2, but the fluctuations
are too large to determine a more exact value.

In phase 2, atg50.53 andg50.54, we interpret the clus
ter size distributions still to be critical. To do so, we have
exclude the largest clusters, which are too large to fit in, a
the smallest, which are too many. The latter is not surprisi
since scale invariance is never expected to hold on the sm
est scales. For the larger clusters, we never see that the
tribution bends downwards in the double logarithmic plo
@cf. Fig. 3~a!#, indicating subcriticality. In some realization

-

-

s-

FIG. 3. ~a! The number of clustersM (S) with size equal to or
larger thanSas a function ofS for different coupling strengthsg in
double logarithmic scale. The data are taken from the syst
shown in Fig. 2. The distribution is subcritical forg50.4, approxi-
mately critical forg50.51, and close to critical also forg50.53
andg50.54, if the largest clusters are disregarded.~b! Estimations
of gc1(N) and gc2(N) with accuracyDg50.005, using a single
realization.
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of phase 2, the size difference between the largest clus
that must be disregarded and the smaller ones is not so
as in Fig. 3~a!. Then, the critical part of the distribution ex
tends further up in size.~In fact, we do not always see
percolating cluster in phase 2, maybe due to finite time
fects. However, the largest clusters are always larger t
they would be if all cluster sizes were critically distributed!
From this evidence, we hypothesize that the entire phase
critical. This is further supported by the fact that the featu
described above are robust with respect to the cluster
crimination parameterdP. Self-organized criticality has
been observed previously in lattices of pulse-coupled os
lators with diverse natural frequencies@11#, where it ap-
peared as critically distributed avalanches of simultane
firings. The question of frequency entrainment was not
dressed in that study. In our model, such avalanches
however, impossible, since waves of firings propagate w
finite speed wheneverg,1.

To confirm the existence ofgc1 andgc2, one should ide-
ally determine their magnitude as a function ofN, and see
whether they converge to finite, separate values asN→`.
Figure 3~b! shows estimations ofgc1(N) and gc2(N) with
accuracyDg50.005, using a single realization for eachN.
More realizations indicate that the spread of the critical v
ues is similar toDg for N55002, i.e., considerably less tha
gc2(N)2gc1(N). The shape of the curves in Fig. 3~b! sup-
port the hypothesis that the critical couplings converge
separate finite values. Since a critical couplinggc5A2/3
'0.82 for global frequency entrainment was shown to ex
in the corresponding one-dimensional lattice@9#, we are
strongly inclined to believe that a finitegc2,0.82 exists in
two dimensions, since increased connectivity facilitates
appearance of order. Therefore, the most important obse
tion in Fig. 3~b! is that gc2(N)2gc1(N) does not seem to
decrease asN increases, suggesting thatgc1 is indeed lower
thangc2, and that phase 2 exists in the thermodynamic lim
N→`. It should also be checked that a lattice in phas
remains in this phase and does not converge to phase
t→`. To do so, we simulate a lattice of 3003300 oscillators
at g50.525 for very long time (4.43105 t.u.). After a tran-
sient of about 1.53105 t.u., the standard deviation of th
mean period distribution in the lattice does not show a
tendency to decrease~not shown!, so that the lattice indeed
does not approach phase 3.

Mean period landscapes from this long simulation
phase 2 are shown in the bottom row of Fig. 4. The clus
configuration never seems to stabilize. This is consistent w
the hypothesis that the entire phase 2 is critical, since t
the system should have infinite transient time. The upper
of Fig. 4 shows mean periods in the same lattice forg
50.40 ~in phase 1!, calculated at corresponding times. It
seen that the positions of the clusters remain essent
fixed. This seems always to be the case in phase 1. A rel
instability in phase 2 is that given the assignment of natu
periods, the mean period landscapes at a given time from
simulations with different initial conditions look very differ
ent. This would make the landscape in phase 2 sensitiv
external perturbations. In contrast, in phase 1 the sys
seems to approach the same mean period landscape re
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less of the initial condition. In phase 3, the position and ex
number of silent oscillators depend on the initial conditio
However, we stress that thestatisticalproperties of the sys-
tem seem to depend only ong in the thermodynamic limit,
and not on the initial condition or the assignment of natu
periods.

The mean period of an oscillator is defined as the m
surement timeDT→`. The instability of the clusters in
phase 2 indicates that these numbers, if they exist, could
very different from the mean periods that we measure dur
a finite time (104 t.u.). We can imagine three possibilitie
~1! The mean periods do not exist,~2! they exist and are the
same for all oscillators, and~3! they exist and are different. I
frequency clusters appear and disappear at completely
dom places in the network as time passes, then alterna
two could be true. If not, we could have alternative thre
Then, one could ask how the mean period landscape wo
look like. There might no longer be a macroscopic, perco
ing cluster. If this is the case, or alternative~1! or ~2! is true,
one has to assume a finiteDT to say that 0,r ,1 in phase 2.

Figure 5 shows distributionsn(P) of the mean periodsP
for different values ofg. It is seen that the maximum shift
towards smaller values ofP as g increases. For a one
dimensional chain, it was shown that the entrained per
was always that of the fastest oscillator in the thermo
namic limit @9#. The same could very well be true here,
which case the spike of the distribution would be placed
P51 for g.gc2 ~or maybe already forg.gc1). Above g
50.45, the distribution becomes progressively asymmet
with a wider and wider tail of long periods. As seen in Fi
5~c!, this tail approximately obeys a power lawn(P)}(P
2P0)2x in phase 2, withx'2. The appearance of oscilla
tors with long mean periods parallels the appearance of c
pletely silent oscillators, mentioned previously. It is seen t
oscillators with very long mean periods most often fire w
normal intervals, but also experience very long periods
silence, appearing as intermittent ‘‘bursts.’’ Abovegc2, the
tail in n(P) disappears.

FIG. 4. Evolution of mean period landscapes in a lattice
3003300 oscillators forg50.40 ~top row!, belonging to phase 1
and g50.525 ~bottom row!, belonging to phase 2. The cluste
seem stable in phase 1 and unstable in phase 2. The mean pe
were measured during 104 t.u., starting from different timesT0.
The color scale is given in brackets in the same way as in Fig. 2,
here white corresponds to smallP and black to largeP.
4-3
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In summary, we have found strong indications for the e
istence of two phase transitions in a large two-dimensio
oscillator lattice with diverse natural frequencies. First, o
frequency entrained cluster becomes macroscopic. Sec
almost all oscillators frequency entrain. Between the t

FIG. 5. Distributionsn(P) of mean periodsP in a lattice of size
5003500. ~a! Linear scale, normalized heights. The rightmost pe
corresponds tog50.30, and going to the left we haveg50.40,
0.45, 0.51, 0.53, and 0.54.~b! Corresponding distributions in loga
rithmic scale.~c! The long period tails in double logarithmic scal
M (P) is the number of oscillators with mean period equal to
larger thanP. The dash-dotted line corresponds tog50.40, the
dashed tog50.51, the dotted tog50.53, and the solid tog
50.54. For the two latter couplings in phase 2, the tails follow
power law.
e
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transitions, the system seems critical, with power law clus
size distributionn(S)}S2t for the microscopic clusters, an
unstable cluster configuration. In this phase, there seem
be a large tail (P2P0)2x of slow oscillators in the distribu-
tion n(P) of mean periodsP. The critical exponentst andx
are both close to 2. However, we are not able to present a
of the relevant critical exponents for this system. We can
say whether the order parameterr increases continuously
from zero or not in phase 2, due to the large fluctuations
the size of the macroscopic cluster, both between differ
realizations, and as time passes. If it does, the first transi
could be called second order. The fact that the tail of sl
oscillators inn(P) seems to develop continuously as we pa
throughgc1 support this hypothesis. The second phase tr
sition seems to be first order in the sense that the cluster
distribution suddenly collapses atgc2, just like the tail of
slow oscillators. However, the transitions cannot be of tra
tional type if it is true that they are separated by a critic
phase. This is a first account of these phenomena. Fu
studies should establish the properties of the transition
more detail and investigate the conditions for their appe
ance with regard to the oscillator model and the distribut
of natural periods.

We thank Martin Folkesson for making the initial simul
tions in this study.
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