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Phase transition to frequency entrainment in a long chain of pulse-coupled oscillators

Per Östborn*
Department of Mathematical Physics, Lund University, S-221 00 Lund, Sweden

~Received 31 May 2001; published 12 July 2002!

A long chain of pulse-coupled oscillators was studied. The oscillators interacted via a phase response curve
similar to those obtained from pacemaker cells in the heart. The natural frequencies were random numbers
from a distribution with finite bandwidth. Stable frequency-entrained states were shown always to exist above
a critical coupling strength. Below the critical coupling, the probability to have such states was shown to be
zero if the number of oscillators is infinite. This discontinuity establishes the existence of a phase transition in
the thermodynamic limit. For weak coupling, clusters of frequency-entrained oscillators emerged. The cluster
sizes were exponentially distributed, even when the critical coupling was approached. At this coupling, the
mean cluster size diverged to infinity according to a power law. The standard deviation of the distribution of
mean frequencies in the chain converged to zero, also according to a power law.
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I. INTRODUCTION

The idea to compare frequency entrainment in oscilla
networks with phase transitions is natural and not new@1–3#.
If the natural frequencies are not all the same, there
degree of disorder, or ‘‘temperature,’’ which has to be ov
come by mutual coupling if all oscillators are to ‘‘freeze
into the same frequency. There is a difference compare
ordinary phase transitions though. Entraining oscillator n
works are dissipative nonequilibrium systems.

To be able to analyze the problem in the thermodyna
limit where the numberN of oscillators goes to infinity, very
simple models for the individual oscillators have to be us
The simplest choice is to describe the state of the oscill
by a single phasefP@0,1). In such oscillator communities
Winfree @1# and Kuramoto@3# have shown, for two differen
kinds of smooth interaction, that there was a sta
frequency-entrained state whenever the coupling exceed
critical level. They assumed random natural frequencies
homogeneous global coupling.

More realistic networks have spatial structure, i.e.,
coupling is local. Kuramoto@3# hypothesized that, in suc
systems with random frequencies one should find cluster
entrained oscillators@4#, and that at a critical coupling leve
one cluster becomes macroscopic, i.e.,O(N) asN→`. This
would signal a phase transition. The clusters are define
be connected sets of oscillators with identical mean
quency. In this paper, a phase transition of this kind is de
onstrated analytically and studied numerically. To the bes
my knowledge this has not been done before. Earlier wor
this area has not revealed conclusive results. Sakaguchi,
nomoto, and Kuramoto@5# searched for this kind of phas
transition in the system

ḟk51/Pk1K (
l Pnk

sin@2p~f l2fk!#. ~1!

Pk is the natural period of oscillatork, andnk is the set of
oscillators coupled tok. In their simulations, they found fre
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quency clusters which appeared to become macroscopic
finite critical K, if the lattice dimensiond.2. However,
Strogatz and Mirollo@6# showed later that, in the thermody
namic limit, for anyd and for any finiteK, the probability of
having frequency entrainment in system~1! was zero for any
random distribution ofPk with nonzero bandwidth. How-
ever, the possibility of seeing sponge-like macroscopic cl
ters could not be excluded. Therefore it is still an open qu
tion whether a criticalK exists for d.2. The proof of
Mirollo and Strogatz rested on the fact that the sine funct
is odd. For a slightly different kind of interaction, Sakaguc
Shinomoto, and Kuramoto@7# gave a heuristic argument wh
an arbitrarily long chain of oscillators with a limited fre
quency bandwidth may frequency entrain. Kopell and
mentrout@8# also pointed out that a nonodd interaction e
ables entrainment in an arbitrarily long chain with a line
frequency gradient with fixed frequency difference betwe
the ends. Later, they showed that frequency entrainment
be present even if the frequencies do not change monot
cally in the chain@30#. However, they assumed thatuPk11
2Pku5O(1/N). This smoothness condition does not allo
random frequencies. Rogers and Wille@9# studied system~1!
in the form of a chain with ‘‘quasi-local’’ interaction. The
coupling strength was proportional tor 2a, where r is the
distance between the interacting oscillators. They found
merically that entrainment emerged in the thermodynam
limit below a critical value ofa.

Another class of interaction is pulse coupling. In su
models, an oscillator affects its neighbors only when
phase is one. This type of model is often adequate to desc
assemblies of biological oscillators. For example, mus
cells and neurons perturb their neighbors primarily wh
they fire action potentials. These are well defined in tim
Inspired by this fact, one says that a pulse-coupled oscilla
‘‘fires’’ when f51.

Ikeda@10# and Brailove@11# have analyzed the dynamic
of a pair of pulse-coupled oscillators with different natur
frequencies. To my knowledge, the behavior of larger pul
coupled oscillator networks has not previously been analy
in the case where the oscillators are locally coupled and n
identical. Mirollo and Strogatz@12# showed that certain
kinds of globally coupled, identical oscillators almost alwa
©2002 The American Physical Society05-1
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synchronize. Locally coupled, identical oscillators have a
been analyzed@13#. Recently, conditions for synchronizatio
of globally coupled nonidentical oscillators were also giv
@14#. The word synchronization is used here to denote a s
where all oscillators fire at the same time, at a constant
quency. In a frequency-entrained state, time lags betw
firings may exist.

In this paper, a pulse-coupled oscillator network of t
form

ḟk51/Pk1gh~fk! (
l Pnk

d~f l ! ~2!

is studied. The termgh(fk) is the phase response curv
~PRC!, whereg is the coupling strength. In words, the d
namics of the system is as follows:ḟk51/Pk when no neigh-
bor l Pnk fires. When one neighbor does fire,fk immedi-
ately jumps by the amountgh(fk). The PRC used here i
inspired by experiments on sinus node cells@15#, and has the
form described in Fig. 1.Pk was taken from a random dis
tribution with finite bandwidth. A one-dimensional cha
with bidirectional nearest-neighbor coupling was used. T
made it possible to establish analytically the existence o
finite critical couplinggc .

The sinus node is the natural pacemaker of the heart,
consists of more than 100 000 cells@16#. In most of these,
action potentials are generated at a given natural freque
which differs from cell to cell@17#. Despite this, the entire
node normally entrains to a common frequency, thus init
ing regular heartbeats. This is achieved for an electric c
pling much weaker than in the rest of the heart@18#. This fact
indicates that a phase transition of the Kuramoto kind m
arise in oscillator networks similar to the sinus node, such
system~2! with the PRC in Fig. 1. Loss of frequency entrai
ment in the sinus node might be one substrate behind s
cardiac arrhythmias@19#.

Peskin@20# proposed another type of model for cardi
pacemaker cells. This type is often used in analytical stud
of pulse-coupled oscillator networks@11–14#. However, at
least in the case of cardiac pacemakers, it is not very re
tic. First, only positive phase shifts are allowed, contrary
experimental evidence@15#. Second, if the phase of an osc
lator receiving a pulse is large enough, its phase is imm

FIG. 1. The termgh(f) is the phase response curve~PRC! used
in system~2!. From the requirement 0<f1gh(f),1, we have
g,1 anda<1. In the analysis,h(f) is left undefined in the region
f2,f,f1 , where 0,f2,f1,1. In the simulations, the
straight dotted line connectedh(f2) with h(f1), wheref250.4
andf150.5. The resulting PRC is reasonable to model interacti
between sinus node cells in the weak coupling regime.
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ately brought to one. This means that the velocity of firi
waves propagating through the network can be infinite. T
is unphysiological and even unphysical. It seems that th
should be time lags between the firings of the oscillators
every realistic, frequency-entrained model network of no
identical oscillators. In the rabbit sinus node, the time lag
the periphery compared to the center is roughly 10% of
firing period@21#. Sometimes, strict synchrony seems to b
good approximation, e.g., in swarms of fireflies flashing w
the same frequency. However, waves of light through
swarms have also been reported@22#.

The PRCgh in Fig. 1 belongs to a family of PRCsu for
which u(0)50 andu is bipolar, withu,0 for small phases,
andu.0 for large phases. The PRC in Fig. 1 may be seen
a linearization of such a general PRC aroundf50. Apart
from sinus node cells, PRCs of many other biological os
lators belong to this family. For example, the calling cycle
crickets is perturbed in this way when they hear a call@2#.
Such a PRC also applies to the flashing cycle of the fire
speciespteroptyx malaccaewhen affected by flashes@22#,
slime mold cells as they react to cAMP@2#, and segments o
the lamprey spinal cord responding to electrical impuls
@23#. Therefore, the analysis of system~2! with this kind of
PRC is of general interest.

II. NUMERICAL METHODS

There are exact ways to integrate system~2! numerically.
Unfortunately the computation time is}N2, making them
unsuitable for this study. Instead an inexact method w
used, with computation time}N.

One inexact method is to use a constant time stepDt
which is small compared to the natural periods. Given
vector of phasesf(t), preliminary new phases for each o
cillator are calculated according tof̃k(t1Dt)5fk(t)
1Dt/Pk . Then, in a predefined order, it is checked wheth
f̃k(t1Dt)>1 for each k. In that casef̃k(t1Dt)→f̃k(t
1Dt)21, and a firing ofk is registered at timetk85t1Dt

2f̃k(t1Dt)Pk . If l Pnk , then f̃ l(t1Dt)→f̃ l(t1Dt)
1gh@(f l(t)1(tk82t)/Pl)#. When all oscillators are

checked,f(t1Dt)5f̃(t1Dt) is assigned.
This method is inexact if and only if the following situa

tion appears~Fig. 2!. Suppose that, in the exact solution,k
fires in the time interval (t,t1Dt# and thatl Pnk also does
so, but beforek. Suppose also that the checking order is su
that k is handled beforel. Then the firing instanttk8 of k is

s

FIG. 2. Illustration of how the possible error in the inexact i
tegration method arises. The bars represent firings of the oscilla
k and l.
5-2
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PHASE TRANSITION TO FREQUENCY ENTRAINMENT . . . PHYSICAL REVIEW E 66, 016105 ~2002!
determined without taking into account the phase jump
receives froml. The incorrecttk8 means that the phase jumpl
receives fromk becomes incorrect, and consequently, whel
is subsequently handled, its firing instant will be sligh
wrong. This in turn means that the phase jumpk receives
from l will be erroneous. Evidently, the probability that th
occurs decreases withDt, i.e., the accuracy increases wh
Dt is made smaller.

The algorithm can be modified to make it exact. Then,
the same way as before, firing instantst̃ k8 are calculated for
all oscillators whose preliminary phase has exceeded
during the time step. This time the firing instants are o
preliminary. The numbertm8 5min$ t̃k8% is registered as the ac
tual firing instant of oscillatorm, its phase is reduced by on
and pulses are delivered to its neighbors as before. Then
preliminary firing instants are calculated for the oscillato
whose phases still exceed one. The process is repeated
no oscillator has f̃k(t1Dt)>1. Then f(t1Dt)5f̃(t
1Dt).

The difference is that in the exact method, the oscilla
that fires first is handled first, whereas the handling orde
predefined in the inexact method. The computation time
comes}N2 since to register the firing of one oscillato
O(N) preliminary firing instantst̃ k8 have to be checked to
find the smallest one. Note that the choice ofDt is irrelevant
as long as the same oscillator never fires twice in a time s

In this study a compromise between the two methods
used. The chain was divided into groups ofm oscillators.
Within each group, the oscillator that fired first was hand
first. Therefore the situation in Fig. 2 never appearedwithin a
group. It could only appear at a group border. Evidently,
accuracy of this method increases withm, becoming exact
for m5N.

For 1<Pk<1.5, I choseDt50.01 andm525 after com-
paring accuracy and computation times for different para
eter values. The raw material for the numerical analysis
this study is the mean periods of the individual oscillators.
compute these, assuming that they exist, the system sh
have reached its attractor, after which they should be m
sured during an infinitely long time. Of course, a finite tra
sient timeTt and a finite measurement timeTm had to be
chosen. The data presented are computed forTt5Tm
51000. For chains of 100 oscillators, the error in the me
periods computed in this way was typically,0.001, where
the exact integration method withTt5Tm550 000 was used
as reference. In all simulations the initial conditionf50
was used.

The finite integration time means that frequency clust
are not perfectly defined. Two neighbor oscillators were s
to belong to the same cluster if and only if the mean per
difference was less thandP50.002. Note that the difficulty
in discriminating clusters does not arise, for example, in
tices of discrete spins, such as the Ising model.

III. EXISTENCE OF A PHASE TRANSITION

In this section the existence of a finite critical coupling
proved. This guarantees that the apparent phase trans
01610
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seen in the simulations~Sec. IV! is not a numerical artifact.
We focus on a certain kind of entrained states, and pr
some properties of these. Loosely speaking, propositio
states that such states always exist ifg.gc . Proposition 2
states that forg,gc , the probability is zero to have suc
states in the thermodynamic limit. This discontinuity in th
probability establishes the existence of a phase transit
Proposition 3 states that the states are stable, so that the
actually be observed. Proposition 2 also states that in
thermodynamic limit, the entrained frequency is almost
ways that of the fastest oscillator. In contrast, for system~1!
the entrained frequency is always the mean of the nat
frequencies@6#.

A system of type~2! is assumed, withh given by Fig. 1.
The oscillators are coupled bidirectionally with their near
neighbors in a chain with open ends. Ifg51, the coupling
can be said to be infinite. Then, if oscillatork fires when
fk11>f1,fk11→fk111h(fk11)5fk111(12fk11)51,
so that oscillatork11 will immediately fire. The firing trans-
mission velocity is infinite. In this case, it is not hard to s
that there is an entrained state in which all oscillators
synchronously if and only ifPmin /Pmax>f1 . Generally, an
entrained state can be described as in Fig. 3. It is specifie
the entrained periodI, and one of the vectorsu or w, which
both have lengthN21. We have

Pk5I 1gh~uk21!Pk1gh~wk!Pk . ~3!

~The uk21 and wk terms vanish fork51 and N, respec-
tively.! We focus on entrained states for which

uk ,wkP@0,f2! or ~f1 ,1!,
~4!

ukP@0,f2!⇔wkP~f1 ,1!,

for all k. The second condition means that two neighbor
cillators are not allowed to trigger each other, or delay ea
other. This implies that a given firing ofk can be associated
unambiguously with one firing ofk11. The time difference
DTk between the associated firings is defined to be positiv
and only if the firing ofk occurs first, where the firing ofk
is said to occur first if and only ifukP(f1 ,1). We
have uk215uk21(Pk ,DTk21 ,DTk) and wk5wk(Pk ,

FIG. 3. Parameters describing an entrained state. Bars repre
firing instants (f51). The termwk is the phase in the cycle o
oscillatork just beforek11 fires.uk is the phase in the oscillato
k11 cycle just beforek fires. The requirements expressed in Eq.~4!
make it possible to associate a given firing ofk with one ofk11.
DTk is the time~with sign! from the firing of k to the associated
firing of k11.
5-3
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DTk21,DTk). Using the sign functions(x)51 for x>0 and
s(x)521 for x,0, and letting b(x)5a for x>0 and
b(x)51 for x,0, it can be checked that

Pk5I 1gb~2DTk21!@12b~2DTk21!g#qkDTk21

~5!
2gb~DTk!@12b~DTk!g# r kDTk ,

where

qk5s~DTk211DTk!/22s~DTk21!21/2,

r k52s~DTk211DTk!/21s~DTk!21/2.

~The DTk21 andDTk terms vanish fork51 andN, respec-
tively.! Equation~5! expresses a continuous, piecewise l
ear, and invertible functionP5 f (I ,DT). We get six different
linear cases, depending on the relation betweenDTk21 and
DTk ~Fig. 4!. For example, in case 1 we have

Pk5I 1g~12g!21DTk212agDTk . ~58!

It is not hard to see that Eq.~58! follows from Eq.~3! since
in this casePk5I 1g(12uk21)Pk1agwkPk , and referring
to Fig. 3,DTk215(12g)(12uk21)Pk andDTk5wkPk .

Proposition 1. Let Pmin<Pk<Pmax. Then there exists an
entrained state fulfilling Eq.~4! wheneverg.gc, wheregc is
given by

~12gc!gc
21~11agc2a!21~Pmax2Pmin!

~6!
5min$f2Pmin ,~12gc!~12f1!Pmax%.

The requirementgc<1 sets the limit Pmin /Pmax>f1 .
Within this limit we seek the set ofP for which (I ,DT)
5 f 21(P) at a giveng is an entrained state which fulfills Eq
~4!. However,f seems practically impossible to invert in ge
eral. To prove Proposition 1, we instead make use of
following two lemmas. The idea of the proof is expressed
Fig. 5.

Lemma 1. Let P5(P1 , . . . ,PN) with Pmin<Pk<Pmax. If
and only if g.gc , it is possible for any suchP to construct
an entrained state (Pmin ,DT8) fulfilling Eq. ~4! with DTk8
>0,;k for P85(P18 ,P2 , . . . ,PN), whereP18<Pmin . Under
the same conditions it is possible to construct a s
(Pmin ,DT 9) with DTk9<0,;k for P95(P1 , . . . ,PN21 ,PN9 ),
wherePN9 <Pmin .

FIG. 4. The functionPk5 f k(I ,DTk21 ,DTk) @Eq.~5!# is piece-
wise linear. It is linear in each of the six regions marked. The fir
order in each case is shown~cf. Fig. 3!.
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Proof of Lemma 1. Locate a bar representing a firing in
stant of oscillatorN ~Fig. 5!. Locate the associated bar o
N21 to the left ofN so thatN receives a positive phase jum
such that its firing interval becomesPmin . Locate the bar of
N22 to the left ofN21, so thatN21 also entrains toPmin .
This is repeated until the bar of oscillator 1 is placed to
left of 2, so that 2 fires with intervalPmin . This will happen
at someDT185DT18(Pmin ,P2, . . . ,PN)>0. If oscillator 1 is
to entrain to Pmin , its natural period must beP185Pmin

2agDT18 .
Since they shall entrain toPmin , no oscillator shall be

delayed. ThereforeDTk218 >0 if DTk8>0. Also, DTN218 >0,
so thatDTk>0,;k. Thus the procedure can fail only ifDTk8
at some stage in the construction becomes so large tha
~4! no longer holds. The worst situation in this respect
when a long section of the chain where all oscillators ha
natural periodPmax is to be entrained toPmin . If j belongs to
this section, it follows from Eq.~58! that for a.0, DTj8
,DTmax⇔DTj8,DTj 218 ,DTmax with DTmax5(12g)g21(1
1ag2a)21(Pmax2Pmin). For and infinitely long section of
this kind, theDTk8 :s will grow monotonically ask decreases,
and saturate at the limitDTmax @24#. Say that the section end
at oscillator k, i.e., Pk5Pmax, but Pk21,Pmax. We have
DTk218 5DTmax. Equation ~4! then requires DTmax

<min$f2Pk21,(12g)(12f1)Pmax%. This condition is most
restrictive if Pk215Pmin . Therefore, Eq.~7! follows. In the
casea50, given thatPk5Pmax, DTk218 5DTmax regardless
of the other natural periods.

The state (Pmin ,DT9) is constructed in the same wa
starting with oscillator 1 instead ofN. Of course we get the
samegc . j

Lemma 2.If a.0, ]DTk /]P1,0,;k, and ]DTk /]PN
.0,;k. Also, ]I /]P1.0 and]I /]PN.0.

Proof of Lemma 2.Equation~5! has the form

FIG. 5. Illustration of how proposition 1 is proved. The e
trained statesf 21(P8) and f 21(P9) are constructed as described
the proof of Lemma 1. By increasing the period of the first oscil
tor from P18 to P1, we get the statef 21(P) from f 21(P8). By then
decreasing the period of oscillatorN from PN to PN9 , the state
f 21(P9) is reached. In both processes allDTk decreases, so tha
DTk8>DTk>DTk9 . This bound means thatf 21(P) is a proper en-
trained state wheneverf 21(P8) and f 21(P9) are. In the figure, the
vector P5(1.37,1.21,1.22,1.50,1.23,1.00,1.42,1.26,1.10,1.34)
used forg50.65 anda51 ~Fig. 1!.
5-4
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Pk5I 1ck1DTk212ck2DTk ,ck j.0

for all DT if a.0. We may write

]DT1 /]P15c12
21]I /]P12c12

21

A

]DTk /]P15ck2
21]I /]P1

1ck1ck2
21]DTk21 /]P1

A ~7!

]DTN21 /]P15cN21,2
21 ]I /]P1

1cN21,1cN21,2
21 ]DTN22 /]P1

]DTN21 /]P152cN1
21]I /]P1 .

Assume that]I /]P1<0. Then]DT1 /]P1,0 from the first
row of Eq. ~7!, ]DT2 /]P1,0 from the second, and so on
From the next to last row we get]DTN21 /]P1,0, while we
get ]DTN21 /]P1>0 from the last row. We have a contra
diction. Thus]I /]P1.0. Therefore,]DTN21 /]P1,0 from
the last row,]DTN22 /]P1,0 from the next to last, and s
on, so that ]DTk /]P1,0,;k. That ]I /]PN.0 and
]DTk /]PN.0,;k, can be shown analogously, or seen
symmetry. j

Proof of Proposition 1.Suppose thatg.gc . Then the
entrained states (Pmin ,DT8)5 f 21(P8) and (Pmin ,DT 9)
5f21(P9) exist according to Lemma 1. By increasing th
period of oscillator 1 continuously fromP18 to P1, leaving all
other periods unchanged, the solution (Pmin ,DT)5f21(P) is
reached.]DTk /]P1,0,;k according to Lemma 2, giving
DTk8>DTk ,;k. By decreasing the period of oscillatorN
from PN to PN8 , the statef 21(P9) is reached fromf 21(P).
]DTk /]PN.0,;k according to Lemma 2, givingDTk8
>DTk>DTk9 ,;k. Since ]I /]P1,N.0 ~Lemma 2!, we also
haveI>Pmin . In summary

DTk8>DTk>DTk9 ,
~8!

I>Pmin .

The three solutionsf 21(P8), f 21(P), and f 21(P9) are
shown in Fig. 5 for a chain of ten oscillators. It may see
evident from Eq.~8! that f 21(P) is an entrained state fulfill-
ing Eq. ~4! whenever f 21(P8) and f 21(P9) are, but we
prove it below to make the treatment complete.

Around k, the statef 21(P) may belong to any of the six
classes in Fig. 4.~The end-point oscillators 1 andN may be
treated in the same setting by introducingDT050 and
DTN50.! Let u8 and w8 be the phase vectors~Fig. 3! be-
longing to the statef 21(P8), u, andw those belonging to the
solution f 21(P), andu9 andw9 the ones belonging to stat
f 21(P9). For notational simplicity, we re-express the fir
part of condition~4! asf121,wk ,uk,f2 , i.e., we let the
phases vary in a continuous, partly negative interval. If
show that
01610
e

uk218 <uk21<uk219 ,

~9!

wk8>wk>wk9 ,

in this notation, then the solutionf 21(P) fulfills the first part
of Eq. ~4!, sinceu8,w8, andu9,w9 do so.

Suppose thatwk8,wk . This implies thatf 21(P) aroundk
belongs to class 1, 5, or 6~Fig. 4!. In classes 1 and 5,wk

5DTk /Pk , so that this meansDTk8,DTk , contradicting Eq.
~8!. In class 6,k makes a negative phase jump due to t
firing of k21. DTk85DTk then meanswk8.wk , and DTk8
>DTk implies wk8.wk . Thus wk8>wk . Suppose now tha
uk218 .uk21. We have 0>uk218 . Also, I>Pmin from Eq. ~8!.
To make the intervalI of k as large as the intervalPmin of
state f 21(P8), the larger positive phase jump 0>uk218
.uk21 must be compensated by a larger negative one,
0<wk8,wk . But we have already shown thatwk8>wk . Thus
uk218 <uk21. That wk>wk9 and uk21<uk219 can be shown
analogously, or seen by symmetry, since a state of class 4@as
f 21(P9)# can be seen as a state of class 1@like f 21(P8)#

turned upside down, withDT→2DT̂, u→ŵ, and w→ û,
where the hat means that the ordering of the elements
been reversed.

The second part of Eq.~4! can be reexpresseduk

,0⇔wk.0. This condition is assumed to be fulfilled by th
state f 21(P8). When the period of oscillator 1 is continu
ously increased fromP18 to P1, thekth elements of the phas
vectors change continuously fromuk8 ,wk8 to uk ,wk ~Fig. 6!.
The argument above together with]I /]P1.0 ~Lemma 2!
shows that all intermediate solutions fulfill the first part
Eq. ~4!. Thus none of these phases can wander through
hatched region. Thus, ifuk ,wk is to violate the second half o
Eq. ~4!, oneof them must cross the linef50. But if one of
them crosses this line, the other must do so simultaneou
since if one of them is zero, thenDTk50, and then the othe
phase is also zero. Therefore the second half of Eq.~4! can-
not be violated. j

We have assumed thata.0 ~Lemma 2! and regarda
50 as a limiting case. It can also be treated separately
quite simply. One immediately arranges the desired entrai
state in a v shape around the fastest oscillatorf, which fires

FIG. 6. Illustration of why the phasesuk ,wk belonging to the
statef 21(P) fulfill the second part of Eq.~4! whenuk8 ,wk8 belong-
ing to f 21(P8) do so. See proof of Proposition 1 for explanation
5-5



a

i-

te

a

a

-

e
ar
h

e
t
g

n
th
ire

a
o

it

t

.

en-
a-
r

l-

-

.
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first @as in the statef 21(P) in Fig. 5#. Inserting new oscilla-
tors does not perturb the state already created sincea50. We
have an effective one-way interaction in the directions aw
from f. I 5Pf sincef is neither delayed nor advanced.

Proposition 2.Let Pk be a random number from a distr
bution with support@Pmin,Pmax#. In the limit N→`, the fol-
lowing holds:

~1! If a realizationP of the system has an entrained sta
fulfilling Eq. ~4!, the probability is one thatI 5Pmin.

~2! The probability is zero that the realization has such
entrained state ifg,gc .

Proof of Proposition 2.Consider an entrained state with
long sequence of oscillatorsm,m21,m22, . . . , with
Pm ,Pm21 , . . . ,,I . All these have to be delayed. To accom
plish the delay of oscillatorm it is favorable thatDTm.0.
Assume that this is the case. Then, sincea<(12g)21, it
follows from Eq.~58! that DTm21,DTm . At somej .0 we
must then have DTm2 j,0, since if the sequenc
DTm ,DTm21 , . . . was to converge to zero, oscillators f
away in the sequence would not be delayed, contrary to w
was required.DTm2 j 21 is then determined by Eq.~5! in case
4 ~Fig. 4!, giving DTm2 j 215g21(Pm2 j2I )1(1
2g)21DTm2 j . Thus, beyond oscillatorm2 j , the DTk :s
drop faster and faster until Eq.~4! is violated. AsN→`, the
probability of having a long sequence as described abov
one for any assumedI .Pmin , i.e., the probability is one tha
I 5Pmin . Thus the critical situation may occur that a lon
sequence of oscillators with periodPmax is to be entrained to
Pmin . This was the situation leading to Eq.~6!. Again, asN
→`, the probability that such a long sequence is fou
somewhere in the chain is one. Therefore, in this limit,
probability is zero to have an entrained state of the des
type wheng,gc . j

A finite chain always entrains at someg,gc if a.0. If
a50, the chain may or may not entrain at ag,gc . It en-
trains atgc if and only if the fastest oscillatorf has period
Pmin , and the slowest has periodPmax. This is becauseI
5Pf5Pmin so that the situation leading to Eq.~6! may oc-
cur. Whena50, it occurs already ifoneoscillator has period
Pmax ~see proof of Lemma 1!. If a.0, the situation occurs
only if a long sequenceof the chain has periodPmax.
Loosely speaking, a finite chain more easily entrains atg
,gc if a.0 than if a50. This observation was used t
interpret the simulation results~Sec. V!.

Proposition 3.The entrained states which fulfill Eq.~4!
are stable.

Proof of Proposition 3.We investigate the fate of an orb
f̃(t)5f(t)1df(t), wheref(t) is a point on the limit cycle
corresponding to the entrained state.df changes only when
one oscillator fires. Whenk fires, the only components tha
change aredfk21 and dfk11. Say thatdf→df8 when k
fires. Looking at Fig. 7,

dfk118 5dfk111gh~x!2gh~uk!.

We see that

x5uk1dfk112Pkdfk /Pk11 .
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Thus, if udfu is small enough

dfk118 5dfk111gh8~uk!~dfk112Pkdfk /Pk11!.

An analogous consideration givesdfk218 . Introducing the
vectordt, with componentsdtk5Pkdfk

H dtk218 5@11gh8~wk21!#dtk212gh8~wk21!dtk

dtk118 52gh8~uk!dtk1@11gh8~uk!#dtk11d

t j85dt j , j 5” k21,k11

.

~10!

In matrix notation,dt85Mkdt. Say thatk1 is the first
oscillator that fires after timet0 , k2 the second, and so on
Then we have the return mapdt(t01I )5Adt(t0), with A
5MkN

. . . Mk2
Mk1

. Each matrix Mk , 1<k<N, occurs

exactly once in the product. (1,1, . . . ,1) is aneigenvector of
eachMk and has eigenvalue 1. Therefore, it is also an eig
vector ofA with eigenvalue 1. It corresponds to a perturb
tion along the limit cycle. The cycle is stable if all othe
eigenvalues have moduli,1. To show this, we use a coro
lary to the Perron–Frobenius theorem@25# which states that
a positive@26# square matrixB has exactly one positive ei
genvector with a positive eigenvaluel1. All other eigenval-
ues have moduli less thanl1. For all natural numbersm,
(1,1, . . . ,1) is aneigenvector toAm with eigenvalue 1.
Therefore it suffices to show thatAm is positive for somem.

It follows from Eq.~4! thatMk is non-negative@26#, since
h8(wk) andh8(uk) equal21 or 2a, and 0<a,g<1. There-
fore A is also non-negative. Suppose thatdt is non-negative.
Let S be the set of oscillatorsj with dt j.0. ChooseS
5$k%. It can be seen in Eq.~10! thatSchanges from$k% only
whenk fires, after which it becomes$k21,k,k11%. Sgrows
one step in the direction of decreasing~increasing! index
when the member oscillator with lowest~highest! index fires.
It can also be seen in Eq.~10! that S never loses members
Thus S5$1, . . . ,N% after sufficiently long time. In other
words, columnk of Am is positive for somem. Sincek is
arbitrary, this means thatAm is positive for somem. j

FIG. 7. Projection onto the (fk ,fk11)-plane of the limit cycle

orbit f(t) and a perturbed orbitf̃(t)5f(t)1df(t). Whenk fires,
dfk11 changes, whereasdfk stays fixed.
5-6
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IV. SIMULATIONS

The behavior of the system aroundgc was studied by
means of simulation. The natural periods were taken from
square distribution with 1<Pk<1.5 @17#. The PRC is speci-
fied in Fig. 1. A chain of 500 000 oscillators was used.

We note first that forg.gc , the chain always seemed t
approach an entrained state which fulfills Eq.~4!.

Figure 8~a! shows a cluster size distribution forg50.78
and a51. In this casegc5A2/3'0.816 @Eq. ~7!#. The dis-
tribution is exponential to a good approximation@27#. This
seemed to be the case for allg,gc and alla. No tendency
towards a critical, power law distribution atgc was seen.
Figure 8~b! shows that the mean cluster sizes^s& diverge as
g→gc . In Fig. 8~c!, the divergences are fitted to power law

^s&}~ ĝc2g!2a. ~11!

g0 1

ln
(<

s>
)

-2.5-7
5

9

ln
(<

s>
)

)ˆ/)ˆln(( cc ggg −

9

0

7

0
0 15000s

ln
(N

(s
))

(a)

(b)

(c)

a = 1

a = 0

a = 1
a = 0

FIG. 8. Properties of the cluster size distribution. Rings cor
spond toa50, and stars toa51. ~a! Cluster sizes were exponen
tially distributed.N(s) is the number of clusters larger than or equ
to s. The parametersa51 andg50.78 were used.~b! Mean cluster
sizes^s& as functions ofg. ~c! Test of Eq.~11!. The termg̃c is
defined to be theĝc which gives the best fit. Fora50, ĝc5gc

52/3 gavea51.89 ~solid line!, while g̃c50.6662 gavea51.56
~dashed line!. For a51, ĝc5gc5A2/3 gavea55.05 ~solid line!,
while ĝc5g̃c50.7953 gavea51.99. Error bars are approximat
95% confidence intervals~see Ref.@28#!.
01610
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The termg̃c is defined to be theĝc that gives the best fit. Fo
both values ofa, g̃c,gc . In the casea50, bothgc and g̃c
gave rise to acceptable fits, given the confidence interv
@28#. For a51, the fit for ĝc5gc was barely acceptable. I
ĝc5gc was used for both values ofa, it would be clear that
aa50Þaa51, so thata becomes a system dependent critic
exponent. However, the estimateda is very sensitive to the
choice ofĝc , and it is not at all clear thatĝc5gc is appro-
priate in the simulations. To test the numerical stability ofg̃c
in the casea51, first Tt55000 andTm52000 was used for
dP50.002 ~Sec. II!, then dP in the range@0.0005,0.003#
was used for the standardTt5Tm51000. This causedg̃c to
vary in the interval@0.7943,0.7964#, giving a in the interval
@1.714,2.113#. The choice of these parameters thus does
seem to be responsible for the underestimation ofgc . It is,
therefore, possible that the system used in the simulat
indeed tends to entrain at ag significantly lower thangc , and
thus one cannot exclude the possibility thataa505aa51.
Probably, a reliable answer to the question of universa
can only be found by analytical argument.

Figure 9~a! shows the mean period distribution in th
chain for two different values ofg for a51. The standard
deviation s decreases wheng increases.s measures the
amount of disorder in the system, and is quite analogou
the entropy. Figure 9~b! showss as a function ofg. The
finite simulation time gave rise to a residuals because of

-

l

FIG. 9. Properties of the mean period distribution. Rings cor
spond toa50, and stars toa51. ~a! Mean period distributionp for
g50.3 andg50.7 for a51. ~b! Standard deviations@p#. ~c! Test
of Eq. ~12!. For a50, ĝc5gc gave b50.86, whereasĝc5g̃c

50.6669 gaveb50.88 ~not shown!. For a51, ĝc5gc gave b
50.89 ~solid line!, while ĝc5g̃c50.7920 gaveb50.71.
5-7
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remaining transients and a finite measurement time. In
figure, this can be seen as a flattening of thea51 curve close
to gc . In Fig. 9~c! the convergences ofs to zero are fitted to
power laws

s}~ ĝc2g!b. ~12!

The data seem consistent with this assumption, even i
error bars are estimated fors. Because of the residuals, I
did not go any closer togc than the point wheres from
simulations withTt55000 andTm52000 started to drop be
low s from the standard simulations withTt5Tm51000.
For a51, g̃c was again significantly lower thangc . For
the same reasons as fora, the question whetherb is univer-
sal or not must be left open.

V. DISCUSSION

The fact that the estimated critical couplingg̃c extrapo-
lated from the data is smaller than the analyticalgc , and that
the difference is greater in the casea51, is consistent with
the remark made after Proposition 2. There it was stated
a finite chain tends to entrain belowgc , and that this ten-
dency is more pronounced whena.0. This suggests that th
error in the estimation is primarily a finite size effect, and n
due to numerical errors. Thus a value ofĝc lower thangc
should be inserted in Eqs.~11! and~12!. Therefore, the pos
sibility should not be discarded that the critical exponents
the system witha50 are equal to those for the systems w
a51.

The possibilities have not been considered that forg
.gc , other attractors may coexist with the entrained st
fulfilling Eq. ~4!, or that other stable entrained states m
exist for g,gc . This would make the phase transition le
well defined. However, no indications of this were seen.
simulations were consistent with the hypothesis that the o
entrained states that existed were those fulfilling Eq.~4!.
Nevertheless, in the case of a two-oscillator system, it w
shown by Ikeda@10# that such entrained states could coex
either with entrained states where the oscillators trigge
each other, or with states where they delayed each o
Generally, mutual triggering requires a smallf1 , whereas
mutual delay requires a largef2 .

That s drops continuously to zero atgc , apparently ac-
cording to a power law, indicates that we have an analogu
a continuous~critical! phase transition. The power law dive
gence of^s& is similar to the divergence of the correlatio
length at the critical point. However, the cluster size dis
bution is not critical atgc . Preliminary simulations indicate
that in two dimensions, there is an even closer analogue
critical phase transition. There, the sizesmax of the largest
cluster diverges at a critical coupling, after which the sma
clusters become islands in an entrained sea, just like isla
of opposing spins in an Ising magnet belowTc . At the criti-
cal coupling, the cluster sizes are critically distributed. Asg
increases further, the islands get smaller, and finally
whole lattice frequency entrains at a second critical coupli
The order parameter
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r[ lim
N→`

smax/N

seems to increase continuously from zero at the first ph
transition, and saturate at one at the second. A fuller acco
of these simulations will be presented within a short tim
Note that in one dimension,r jumps discontinuously from
zero to one atgc , since cluster sizesO(N) cannot coexist
with an island density larger than zero. In this sense,
phase transition described in this paper is first order. T
might have something to do with the absence of a criti
cluster size distribution atgc .

Two-dimensional lattices of locally coupled, puls
coupled oscillators with random natural frequencies ha
been studied numerically by Corral, Pe´rez, and Dı´az-Guilera
@29#. They used the Peskin type of interaction~Sec. I!, and
studied avalanches, i.e., regions that fire at the same time
to infinitely fast firing transmission. Their simulations su
gested that the size distribution of the avalanches was cri
for a range of parameter values, indicating self-organiz
criticality ~SOC!. No signs of SOC have been seen in t
present simulations; in the one-dimensional chain, the clu
size distribution wasnevercritical ~Sec. IV!, and in the two-
dimensional case the critical point seemed well defined. T
different results might be due to the fact that avalanches
not directly related to frequency clusters. The sizes and
cations of avalanches may vary from time to time, where
frequency clusters by definition are time-independent
gions. However, if a system displays SOC as judged from
avalanche size distribution, it should do so as judged fr
the cluster size distribution~assuming that stationary cluste
do exist!. Therefore, it is more plausible that the differin
behaviors are due to qualitative differences between our
tems. For example, avalanches are not allowed in the sys
studied here, unless the cuopling is infinite (g51).

The assumption of a finite frequency bandwidth m
seem unnatural. In the case of cardiac pacemaker cells, t
is a lower bound on the natural period set by the refract
period, during which the cell is recovering and no new act
potential can be initiated. However, there is no apparent
per bound. The excitable, impulse-transmitting nonpa
maker cells may be seen as oscillators with infinite natu
period. Like all other excitable cardiac cells, these can
triggered shortly after a preceding firing, so that the en
heart can entrain to a common frequency. The problem w
our model is that the PRC is independent of the natural
riod Pk . This means that during a timef2Pk oscillatork can
only be delayed, so that it cannot be entrained to a pe
shorter than this. Therefore, our model can simulate card
tissue realistically only if a quite narrow bandwidth is a
sumed. The occurrence of long natural periods would m
impossible any phase transition to states with order par
eterr .0 in a one-dimensional chain, since such slow os
lators would break the entrainment at finite intervals. In m
tidimensional lattices, however, the slow oscillators could
islands in an entrained sea, so that states withr .0 were
possible, but states withr 51 still impossible.
5-8
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To get a deeper understanding of the kind of phase t
sitions described in this paper, one should ideally inven
renormalization group from which critical exponents can
deduced, and their possible universality determined. In
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way, a proper classification of the phase transitions mi
also be obtained. As discussed above, the transition in
one-dimensional chain had features reminiscent both o
first- and second-order transition.
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~2001!; P. Östborn, G. Ohle´n, and B. Wohlfart,ibid. 211, 219
~2001!.

@20# C. S. Peskin,Mathematical Aspects of Heart Physiology~Cou-
rant Institute of Mathematical Sciences, New York Universi
New York, 1975!.

@21# W. K. Bleekeret al., Circ. Res.46, 11 ~1980!.
@22# J. Buck, Q. Rev. Biol.63, 265 ~1988!.
@23# A. H. Cohen, P. J. Holmes, and R. H. Rand, J. Math. Biol.13,

345 ~1982!.
@24# This is the main difference to system~1!. There, if DTk21

5DTk in an entrained state,k fires with its natural period since
the sine function is odd. Thus, theuDTku:s grow without bound
if a longer and longer section of the chain is to be advanced~or
delayed!. In the system used here, this problem arises only
the delay case~see proof of Proposition 2!.

@25# P. Lancaster,Theory of Matrices~Academic, New York, 1969!.
@26# A vector or matrix is positive~non-negative! if all elements are

positive ~non-negative! real numbers.
@27# The two largest clusters are somewhat oversized. Close tgc

there was typically one or two such clusters. I tentatively
tribute this to the finitedP ~Sec. II!. As gc is approached from
below, the frequency difference between two neighborclusters
decreases~Fig. 9!, so that it at some point is typically less tha
dP. After that, the cluster sizes are severely overestima
Specifically, it is the large clusters that have similar freque
cies, while the smaller ones are more extreme~not shown!.

@28# Ninety five percent confidence intervals were calculated fr
the assumption of exponential cluster size distribution. This
to the result that if the number of clusters is large, ln^s& is
normally distributed with variancês&/N. The intervals are
therefore ln̂s&61.96A^s&/N.

@29# A. Corral, C. J. Pe´rez, and A. Dı´az-Guilera, Phys. Rev. Lett
78, 1492~1997!.

@30# N. Kopell and G. B. Ermentrout, SIAM J. Appl. Math.50,
1014 ~1990!.
5-9


