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Phase transition to frequency entrainment in a long chain of pulse-coupled oscillators
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A long chain of pulse-coupled oscillators was studied. The oscillators interacted via a phase response curve
similar to those obtained from pacemaker cells in the heart. The natural frequencies were random numbers
from a distribution with finite bandwidth. Stable frequency-entrained states were shown always to exist above
a critical coupling strength. Below the critical coupling, the probability to have such states was shown to be
zero if the number of oscillators is infinite. This discontinuity establishes the existence of a phase transition in
the thermodynamic limit. For weak coupling, clusters of frequency-entrained oscillators emerged. The cluster
sizes were exponentially distributed, even when the critical coupling was approached. At this coupling, the
mean cluster size diverged to infinity according to a power law. The standard deviation of the distribution of
mean frequencies in the chain converged to zero, also according to a power law.
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I. INTRODUCTION guency clusters which appeared to become macroscopic for a
finite critical K, if the lattice dimensiond>2. However,
The idea to compare frequency entrainment in oscillatoiStrogatz and Mirolld 6] showed later that, in the thermody-
networks with phase transitions is natural and not filw8].  namic limit, for anyd and for any finitek, the probability of
If the natural frequencies are not all the same, there is &aving frequency entrainment in systéi) was zero for any
degree of disorder, or “temperature,” which has to be overrandom distribution ofP, with nonzero bandwidth. How-
come by mutual coupling if all oscillators are to “freeze” ever, the possibility of seeing sponge-like macroscopic clus-
into the same frequency. There is a difference compared tgrs could not be excluded. Therefore it is still an open ques-
ordinary phase transitions though. Entraining oscillator nettion whether a criticalkK exists for d>2. The proof of
works are dissipative nonequilibrium systems. Mirollo and Strogatz rested on the fact that the sine function
To be able to analyze the problem in the thermodynamigs odd. For a slightly different kind of interaction, Sakaguchi,
limit where the numbeN of oscillators goes to infinity, very =~ Shinomoto, and Kuramof] gave a heuristic argument why
simple models for the individual oscillators have to be usedan arbitrarily long chain of oscillators with a limited fre-
The simplest choice is to describe the state of the oscillatofluency bandwidth may frequency entrain. Kopell and Er-
by a single phase €[0,1). In such oscillator communities, mentrout[8] also pointed out that a nonodd interaction en-
Winfree[1] and Kuramotd 3] have shown, for two different ables entrainment in an arbitrarily long chain with a linear
kinds of smooth interaction, that there was a stablefrequency gradient with fixed frequency difference between
frequency-entrained state whenever the coupling exceededtlae ends. Later, they showed that frequency entrainment can
critical level. They assumed random natural frequencies ange present even if the frequencies do not change monotoni-
homogeneous global coupling. cally in the chain[30]. However, they assumed thg®, , ;
More realistic networks have spatial structure, i.e., the—p,|=0(1/N). This smoothness condition does not allow
coupling is local. Kuramotg3] hypothesized that, in such random frequencies. Rogers and W[# studied systenl)
systems with random frequencies one should find clusters af the form of a chain with “quasi-local” interaction. The
entrained oscillatorf4], and that at a critical coupling level coupling strength was proportional to ¢, wherer is the
one cluster becomes macroscopic, i@&N) asN—o. This  distance between the interacting oscillators. They found nu-
would signal a phase transition. The clusters are defined tmerically that entrainment emerged in the thermodynamic
be connected sets of oscillators with identical mean fre{imit below a critical value ofw.
quency. In this paper, a phase transition of this kind is dem- Another class of interaction is pulse coupling. In such
onstrated analytically and studied numerically. To the best ofnodels, an oscillator affects its neighbors only when its
my knowledge this has not been done before. Earlier work itphase is one. This type of model is often adequate to describe
this area has not revealed conclusive results. Sakaguchi, Skissemblies of biological oscillators. For example, muscle
nomoto, and Kuramot§5] searched for this kind of phase cells and neurons perturb their neighbors primarily when

transition in the system they fire action potentials. These are well defined in time.
Inspired by this fact, one says that a pulse-coupled oscillator
- ; “fires” when ¢=1.
=1/P+K 2 - . 1
$i= 1Py |;k si2m(¢1= )] @ Ikeda[10] and Brailove[11] have analyzed the dynamics

of a pair of pulse-coupled oscillators with different natural
Py is the natural period of oscillatd, andn, is the set of frequencies. To my knowledge, the behavior of larger pulse-
oscillators coupled t&. In their simulations, they found fre- coupled oscillator networks has not previously been analyzed
in the case where the oscillators are locally coupled and non-
identical. Mirollo and Strogatd12] showed that certain
*Electronic address: per.ostborn@matfys.lth.se kinds of globally coupled, identical oscillators almost always
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FIG. 2. lllustration of how the possible error in the inexact in-
tegration method arises. The bars represent firings of the oscillators

FIG. 1. The termgh() is the phase response cufRRQ used K andl-

in system(2). From the requirement9¢+gh(¢)<1, we have
g<1anda=<1. In the analysish(¢) is left undefined in the region  ately brought to one. This means that the velocity of firing
¢-<¢p<¢., where 0<¢_<¢,<1. In the simulations, the \yaves propagating through the network can be infinite. This
straight dotted line connectdt(¢_) with h(¢.), where¢_=0.4 5 ynphysiological and even unphysical. It seems that there
and¢, =0.5. The resulting PRC is reasonable to model interactiong,p o114 be time lags between the firings of the oscillators in
between sinus node cells in the weak coupling regime. . .

every realistic, frequency-entrained model network of non-

synchronize. Locally coupled, identical oscillators have aIs<J‘jer]tiC"3_‘I oscillators. In the rabbit sinus_node, the time lag of
been analyzeft13]. Recently, conditions for synchronization the Periphery compared to the center is roughly 10% of the

of globally coupled nonidentical oscillators were also givenfifing period[21]. Sometimes, strict synchrony seems to be a
[14]. The word synchronization is used here to denote a statgood approximation, e.g., in swarms of fireflies flashing with
where all oscillators fire at the same time, at a constant frethe same frequency. However, waves of light through the
quency. In a frequency-entrained state, time lags betweepvarms have also been repor{@2].

firings may exist. The PRCgh in Fig. 1 belongs to a family of PRQs for
In this paper, a pulse-coupled oscillator network of thewhichu(0)=0 andu is bipolar, withu<0 for small phases,
form andu>0 for large phases. The PRC in Fig. 1 may be seen as
a linearization of such a general PRC aroufe 0. Apart
o from sinus node cells, PRCs of many other biological oscil-
=1/P+gh 1] 2
P kT g (¢k)|;k () @ lators belong to this family. For example, the calling cycle of

crickets is perturbed in this way when they hear a [2jl
is studied. The termgh(¢y) is the phase response curve Sych a PRC also applies to the flashing cycle of the firefly
(PRQ, whereg is the coupling strength. In words, the dy- speciespteroptyx malaccaevhen affected by flashei®2],
namics of the system is as followgj = 1/P, when no neigh-  slime mold cells as they react to cAMP], and segments of
bor | e n fires. When one neighbor does fir¢, immedi-  the lamprey spinal cord responding to electrical impulses
ately jumps by the amourgh(¢y). The PRC used here is [23]. Therefore, the analysis of systei® with this kind of
inspired by experiments on sinus node cgll§], and has the PRC is of general interest.
form described in Fig. 1P, was taken from a random dis-
tribution with finite bandwidth. A one-dimensional chain

with bidirectional nearest-neighbor coupling was used. This Il. NUMERICAL METHODS
made it possible to establish analytically the existence of a
finite critical couplingg,. There are exact ways to integrate syst@nnumerically.

The sinus node is the natural pacemaker of the heart, aridnfortunately the computation time isN?, making them
consists of more than 100000 cefls6]. In most of these, unsuitable for this study. Instead an inexact method was
action potentials are generated at a given natural frequencysed, with computation time N.
which differs from cell to cel[17]. Despite this, the entire One inexact method is to use a constant time skep
node normally entrains to a common frequency, thus initiatwhich is small compared to the natural periods. Given the
ing regular heartbeats. This is achieved for an electric couvector of phasesgp(t), preliminary new phases for each os-
pling much weaker than in the rest of the hd¢dg]. This fact  cillator are calculated according tap,(t+ At)= ¢ (t)
indicates that a phase transition of the Kuramoto kind may+ At/P,. Then, in a predefined order, it is checked whether
arise in oscillator networks similar to the sinus node, such azqz:k(t+At)>1 for eachk. In that case?i:k(t+At)—>}$k(t

system(2) with the PRC in Fig. 1. Loss of frequency entrain- AN -1 firi fici it ttime, =t+ At
ment in the sinus node might be one substrate behind some ~ )~ 1, and afiring ofk is registered at time,

cardiac arrhythmiag19]. —gbk(t+At)Pk., If len,, then ¢|(t+At)—_>¢|(t+At)
Peskin[20] proposed another type of model for cardiac *9NL(#1(1) + (t—1)/P))].  When all oscillators are
pacemaker cells. This type is often used in analytical studieshecked,¢(t+ At) = ¢(t+ At) is assigned.
of pulse-coupled oscillator networkd1-14. However, at This method is inexact if and only if the following situa-
least in the case of cardiac pacemakers, it is not very realigion appeargFig. 2). Suppose that, in the exact solutidn,
tic. First, only positive phase shifts are allowed, contrary tofires in the time intervalt;t+ At] and thatl € n, also does
experimental evidenddl5]. Second, if the phase of an oscil- so, but beforé&. Suppose also that the checking order is such
lator receiving a pulse is large enough, its phase is immedithat k is handled beforé. Then the firing instant, of k is
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determined without taking into account the phase jump it AT

receives from. The incorrect, means that the phase jurhp —> —>time
receives fronk becomes incorrect, and consequently, when k-1 | ATk 5 |

is subsequently handled, its firing instant will be slightly K 0 | |

wrong. This in turn means that the phase jukipeceives = Pk

from | will be erroneous. Evidently, the probability that this k+1 Ok Pret | |
occurs decreases witht, i.e., the accuracy increases when

At is made smaller. k+2 I- ~- 2

The algorithm can be modified to make it exact. Then, in

the same way as before, firing insta}ﬁt(sare calculated for FIG. 3. Parameters describing an entrained state. Bars represent
all oscillators whose preliminary phase has exceeded onffing instants ¢=1). The termgy is the phase in the cycle of
during the time step. This time the firing instants are 0n|yoscillatorkjust beforek+1 fires. 6, is the phase in the oscillator

preliminary. The numbet’,=min{t}} is registered as the ac- r':;&;){d%ii‘?’glze:gr:(szgis.;ehg re.qg:ef.rpr?nts e.i(k? roe:sziln(‘?'
tual firing instant of oscillatom, its phase is reduced by one, > It possible o assoc given firingkohi -

. . . AT, is the time(with sign from the firing ofk to the associated
and pulses are delivered to its neighbors as before. Then ne

ing of k+1.
preliminary firing instants are calculated for the oscillators ng o

whose phases still exceed one. The process is repeated unfilep, iy the simulationéSec. IV) is not a numerical artifact.
no oscillator has ¢y(t+At)=1. Then ¢(t+At)=&(t  We focus on a certain kind of entrained states, and prove
+At). some properties of these. Loosely speaking, proposition 1
The difference is that in the exact method, the oscillatorstates that such states always exisy i g.. Proposition 2
that fires first is handled first, whereas the handling order istates that foy<g., the probability is zero to have such
predefined in the inexact method. The computation time bestates in the thermodynamic limit. This discontinuity in the
comes«N? since to register the firing of one oscillator, probability establishes the existence of a phase transition.
O(N) preliminary firing instant&,L have to be checked to Proposition 3 states that the states are stable, so that they can
find the smallest one. Note that the choice\dfis irrelevant  actually be observed. Proposition 2 also states that in the
as long as the same oscillator never fires twice in a time stephermodynamic limit, the entrained frequency is almost al-
In this study a compromise between the two methods waways that of the fastest oscillator. In contrast, for sys{&m
used. The chain was divided into groups mafoscillators.  the entrained frequency is always the mean of the natural
Within each group, the oscillator that fired first was handledfrequencieg6].
first. Therefore the situation in Fig. 2 never appearitin a A system of type(2) is assumed, witln given by Fig. 1.
group. It could only appear at a group border. Evidently, theThe oscillators are coupled bidirectionally with their nearest
accuracy of this method increases with becoming exact neighbors in a chain with open ends.gf 1, the coupling
for m=N. can be said to be infinite. Then, if oscillaterfires when
For 1<P,=<1.5, | choseAt=0.01 andm=25 after com- ¢y 1=, Pri1— drs1th(Pi1) = drs1H(1—dyi1) =1,
paring accuracy and computation times for different paramso that oscillatok+ 1 will immediately fire. The firing trans-
eter values. The raw material for the numerical analysis irmission velocity is infinite. In this case, it is not hard to see
this study is the mean periods of the individual oscillators. Tothat there is an entrained state in which all oscillators fire
compute these, assuming that they exist, the system shougynchronously if and only iP,j,/Pmac @+ . Generally, an
have reached its attractor, after which they should be meantrained state can be described as in Fig. 3. It is specified by
sured during an infinitely long time. Of course, a finite tran-the entrained periotl and one of the vector8 or ¢, which
sient timeT,; and a finite measurement tinlg, had to be both have lengtiN—1. We have
chosen. The data presented are computed Toe T,
=1000. For chains of 100 oscillators, the error in the mean Px=1+gh(6x—1)Px+gh(ew) Py. 3
periods computed in this way was typicaly0.001, where
the exact integration method with=T,=50 000 was used
as reference. In all simulations the initial conditigh=0

(The 6, and ¢, terms vanish fork=1 and N, respec-
tively.) We focus on entrained states for which

was used. P c[0.6_) or 1
The finite integration time means that frequency clusters - ekel06-) (#+.1) ()
are not perfectly defined. Two neighbor oscillators were said 0 e[0,d_ )= ppe (b 1),

to belong to the same cluster if and only if the mean period
difference was less thafiP=0.002. Note that the difficulty for all k. The second condition means that two neighbor os-
in discriminating clusters does not arise, for example, in latcillators are not allowed to trigger each other, or delay each
tices of discrete spins, such as the Ising model. other. This implies that a given firing ¢&fcan be associated
unambiguously with one firing df+ 1. The time difference
AT, between the associated firings is defined to be positive if
and only if the firing ofk occurs first, where the firing d¢

In this section the existence of a finite critical coupling isis said to occur first if and only if6 e (¢, ,1). We
proved. This guarantees that the apparent phase transitidvave 6,_1=6_1(Py,AT_1,ATy) and o= @w(Px,

Ill. EXISTENCE OF A PHASE TRANSITION
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FIG. 4. The functionP,=f,(I,AT,_1,AT}) [Eq(5)] is piece- ) ,
wise linear. It is linear in each of the six regions marked. The firing (Pmif;AT) (”_A1T) (Pmif;Ar )
order in each case is showef. Fig. 3. =f(P) =f(P) =1(P)

FIG. 5. lllustration of how proposition 1 is proved. The en-
- . 7 trained state$~*(P') andf ~1(P") are constructed as described in
E(X):li for<>(<)<.(é), ang Ietr;ungkbfszr:? for x>0 and the proof of Lemma 1. By increasing the period of the first oscilla-
(x)=1 for x<0, it can be checked tha tor from P to P4, we get the staté™ (P) from f~1(P’). By then
_ decreasing the period of oscillattt from Py to Py, the state
=]+ — —b(— Ak N
Pi=1Hgb(— ATy )[1=b(= AT 1)g]* AT f~1(P") is reached. In both processes All, decreases, so that
(5) AT =AT,=AT} . This bound means thdt }(P) is a proper en-
trained state whenevér *(P’) andf~1(P") are. In the figure, the
vector P=(1.37,1.21,1.22,1.50,1.23,1.00,1.42,1.26,1.10,1.34) was
used forg=0.65 anda=1 (Fig. 1.

AT, 4,AT,). Using the sign functiors(x)=1 for x=0 and

—gb(ATY[1—b(AT Q] ATy,
where

Q=S(AT,_ 1 +AT)/2—s(AT_1)—1/2,

Proof of Lemma 1Locate a bar representing a firing in-
re=—S(ATy-1+AT)/2+s(ATy) —1/2. stant of oscillatorN (Fig. 5). Locate the associated bar of
N—1 to the left ofN so thatN receives a positive phase jump
such that its firing interval becoméy,;,. Locate the bar of
N—2 to the left ofN—1, so thatN— 1 also entrains t® ;.
This is repeated until the bar of oscillator 1 is placed to the
left of 2, so that 2 fires with intervedP,,;,. This will happen

(The AT,_, and AT, terms vanish fok=1 andN, respec-
tively.) Equation(5) expresses a continuous, piecewise lin-
ear, and invertible functioR=f(1,AT). We get six different
linear cases, depending on the relation betw&dp_, and
AT, (Fig. 4). For example, in case 1 we have

at someAT;=AT;(Pmin,Ps, .. .,Pn)=0. If oscillator 1 is
Pe=1+9(1—g) AT, ,—agAT,. (5') to entrain toP.y,, its natural period must b&;=P,
_ _ —agAT;.
It is not hard to see that E¢5’) follows from Eq.(3) since Since they shall entrain t®,,,, no oscillator shall be

in this caseP =1+ g(1— fk-1)P+agecPy, and refering  gejayed. Therefora T, ;=0 if AT;=0. Also, AT},_,=0,
to Fig. 3,AT,_; =(1~0)(1—fy_1)Py and ATy = ¢Py. so thatAT,=0Yk. Thus the procedure can fail only 4T},

Proposition 1 Let P,i.<P,<Ppmnax. Then there exists an in th ion b I h
entrained state fulfilling Eq4) whenevelg>g., whereg. is at some stage in the constructlon. ecomes so farge that .Eq.
e ¢ (4) no longer holds. The worst situation in this respect is

given by when a long section of the chain where all oscillators have
(1-9.)9- H(1+age—a) YPa— Prin) natural periodP ., IS to be entrained t®,,,. If j belongs to
98 9 (Pmax Prin 6 this section, it follows from Eq(5') that for a>0, AT
=mi{d_Ppin,(1—=9c) (1= . )Pmag- <ATmax<:>ATj,<ATj,—1<ATmax with AT.=(1-g)g (1

+ag—a) Y (Pmax—Pmin)- For and infinitely long section of
The requirementg.<1 sets the limitP;,/Pmasc=¢+.  this kind, theAT, :s will grow monotonically ak decreases,
Within this limit we seek the set oP for which (I,AT) and saturate at the limi T,,,,[24]. Say that the section ends
=f~!(P) at a giveng is an entrained state which fulfills Eq. at oscillatork, i.e., Py= P but Py_;<Pm.. We have
(4). However f seems practically impossible to invertin gen- AT, =AT,., Equation (4) then requires AT
eral. To prove Proposition 1, we instead make use of thesmin{¢_P,_,,(1—g)(1— ¢.)Pmad. This condition is most
following two lemmas. The idea of the proof is expressed inrestrictive if P,_1=Ppin. Therefore, Eq(7) follows. In the

Fig. 5. _ casea=0, given thatP, =P, AT, ;=AT s regardless
Lemma 1Let P=(Py, ... ,Py) with Ppn<P<Pma. If  of the other natural periods.

and only ifg>g., it is possible for any suck to construct The state P,,,,AT") is constructed in the same way,

an entrained stateP(,,, AT') fulfilling Eq. (4) with AT, starting with oscillator 1 instead df. Of course we get the

=0,Vk for P'=(P{,P;, ... Py), whereP;<P,. Under  sameg,. -

the same conditions it is possible to construct a state Lemma 2.If a>0, JAT,/dP,<0Yk, and JAT,/dPy
(Pmin,AT") with ATy<OVk for P"=(Pq, ... ,Py_1,PX),  >0\Vk. Also, dl/dP,>0 anddl/dPy>0.
whereP{<Pin- Proof of Lemma 2Equation(5) has the form
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P=1+4C1 AT 1= CoA Ty, ;>0 0k
for all AT if a>0. We may write 0- Pk
AT, 19Py=ctal/oP,—cpt .. S0
Oy

_1 Ok
(?ATk/O-'P]_:Ckz &l/&Pl
FIG. 6. lllustration of why the phase , ¢, belonging to the
statef ~1(P) fulfill the second part of Eq(4) when 6, , ¢ belong-
ing to f~%(P’) do so. See proof of Proposition 1 for explanation.

+Cy1Crs AT 1 /9P,

()

&ATN_1/&P1=C,QE1’2&|/8P1 ell(—ls ek*l$ 9;(’—1’

- 9

+Cn- 110N 21 PATN 2/ 3Py ®
IATN_1/IP1=—cniallaPy. PL= PK= i

Assume thawl/dP,=<0. ThendAT,/dP,<0 from the first

row of Eq.(7), JAT,/dP,<0 from the second, and so on. in this notation, then the solutioi *(P) fulfills the first part
From the next to last row we gefATy_,/dP,<0, while we  of Eq. (4), sinced’,¢’, and 6",¢" do so.

get JATy_,/9P,=0 from the last row. We have a contra-  Suppose thab, < ¢ . This implies thatf ~*(P) aroundk
diction. Thusdl/dP,>0. Therefore JATy_1/9P1<0 from belongs to class 1, 5, or @ig. 4). In classes 1 and 5p,
the last row,dATy_,/dP;<0 from the next to last, and so =AT,/P,, so that this mean& T, <AT,, contradicting Eq.
on, so that dAT,/dP,<OYk. That dl/dPy>0 and (g) |n class 6k makes a negative phase jump due to the
JAT, /9Py>0Vk, can be shown analogously, or seen byfiring of k—1. AT,=AT, then meansp,> ¢y, and AT,

symmetry. o '
Proof of Proposition 1.Suppose thagg>g.. Then the = AT Implies ¢i> . ThUS ¢ =@ Suppose now that

entrained states R, AT')= f*l(P/) and (P, AT”) 9|,(_1> O 1. We have G 0{(_1. Also, IBPmin.from Eq.(8).
—f~1(P") exist according to Lemma 1. By increasing the To make1 the interval of k as Ie}r.ge as the m}ervﬁ?min’ of
period of oscillator 1 continuously from to P;, leaving all ~ State f~*(P’), the larger positive phase jump=0_,
other periods unchanged, the solutid?,§,, AT)=f %(P) is > fk-1 Must be compensated by a larger negative one, i.e.,
reached.dAT,/dP,<0VYk according to Lemma 2, giving O0<@<¢i. But we have already shown thaf= ¢, . Thus
AT, =AT,,Vk. By decreasing the period of oscillattd  6;_;=<6k_1. That ¢,=¢y and 6,_;<6_, can be shown
from Py to Py, the statef ~*(P”) is reached fronf ~1(P). analogously, or seen by symmetry, since a state of claas 4
IAT,/9P\>0Vk according to Lemma 2, givingAT, f '(P")] can be seen as a state of clasflike f~*(P')]
=AT, =ATy,Vk. Sincedl/dP,,>0 (Lemma 2, we also turned upside down, witAT— —AT, 6—¢, and ¢— 0,
havel =P . In summary where the hat means that the ordering of the elements has

been reversed.

The second part of Eq(4) can be reexpressed

(8)  <0e ¢, >0. This condition is assumed to be fulfilled by the

statef “}(P’). When the period of oscillator 1 is continu-
The three solutiong~*(P"), f~%(P), and f~(P") are ously increased frorf; to P, thekth elements of the phase

shown in Fig. 5 for a chain of ten oscillators. It may seemvectors change continuously frofif, ¢y to 6y, ¢y (Fig. 6).
evident from Eq(8) thatf ~%(P) is an entrained state fulfill- The argument above together with/JP,>0 (Lemma 2
ing Eq. (4) wheneverf (P’) and f~%(P") are, but we shows that all intermediate solutions fulfill the first part of
prove it below to make the treatment complete. Eqg. (4). Thus none of these phases can wander through the
Aroundk, the statef “1(P) may belong to any of the six hatched region. Thus, #, ¢, is to violate the second half of
classes in Fig. 4The end-point oscillators 1 arld may be  Eq. (4), oneof them must cross the ling=0. But if one of
treated in the same setting by introducidgl,=0 and them crosses this line, the other must do so simultaneously,
ATy=0) Let ' and ¢’ be the phase vectorFig. 3) be-  since if one of them is zero, thexiT,=0, and then the other
longing to the staté *(P'), 8, and¢ those belonging to the phase is also zero. Therefore the second half of(Bqcan-
solutionf ~1(P), and #” and ¢” the ones belonging to state not be violated. |
f~1(P"). For notational simplicity, we re-express the first We have assumed tha>0 (Lemma 2 and regarda
part of condition(4) as¢, —1<¢y,0,<¢_, i.e., we letthe =0 as a limiting case. It can also be treated separately and
phases vary in a continuous, partly negative interval. If weguite simply. One immediately arranges the desired entrained
show that state h a v shape around the fastest oscilldtowhich fires

AT, =AT,=AT],

=P nin-
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first [as in the staté ~*(P) in Fig. 5]. Inserting new oscilla- 1

tors does not perturb the state already created sird@. We FA

have an effective one-way interaction in the directions away

from f. | = P; sincef is neither delayed nor advanced. ~
Proposition 2.Let P, be a random number from a distri- Phst ¢ O

bution with supporf P i, Pmaxl- In the limit N— o, the fol-

lowing holds: (1)
(2) If a realizationP of the system has an entrained state

fulfilling Eq. (4), the probability is one that=P ;. 0
(2) The probability is zero that the realization has such an

entrained state ij<<g.. FIG. 7. Projection onto thed , ¢\ 1)-plane of the limit cycle
Proof of Proposition 2Consider an entrained state with a orhit ¢(t) and a perturbed orbib(t) = ¢(t) + S4(t). Whenk fires,

long sequence of oscillatoranm—1m—2,..., with 8¢+ 1 changes, whereas, stays fixed.

Pm:Pm-1, - ..,<l.All these have to be delayed. To accom-

plish the delay of oscillatom it is favorable thatAT,,>0.

Assume that this is the case. Then, simce(1—g) 1, it

follows from Eq.(5') thatAT,,_1<AT,,. At somej>0 we

must then have AT, ;<0, since if the sequence

ATy, ATph_q, ... was to converge to zero, oscillators far

away in the sequence would not be delayed, contrary to what

Zvas (rg%l.nreddfz)k,Tm,di;/ilnl; theAnTie_tje_rrln:lnge_dl?g:ﬁsz I|r; iazsle An analogoys consideration givesp,_, . Introducing the

—g) *AT,_;. Thus, beyond oscillatom—j, the AT,:s vector &7, with componentsry =Py

drop faster and faster until E¢4) is violated. AsSN— o, the

probability of having a long sequence as described above is . , ,

one for any assumeld>P,,,,, i.e., the probability is one that om1=[1+gh"(@k-1)]67—1—gh' (@x—1) o7

| =Ppmin. Thus the critical situation may occur that a long 87k 1=—9h'(8) 1 +[1+gh' (60,0187 15 .

sequence of oscillators with peridd, ., is to be entrained to ;L .

P..in. This was the situation leading to E@). Again, asN T =01, jFk-lk+l

—oo, the probability that such a long sequence is found

somewhere in the chain is one. Therefore, in this limit, the

probability is zero to have an entrained state of the desired

type wheng<g,. |
A finite chain always entrains at songe<g. if a>0. If

O

Thus, if | §¢| is small enough

Oy 1= 01+ 9N () (Sbyr1— PSby/Piin).

(10

In matrix notation,57' =M 87. Say thatk, is the first
oscillator that fires after timé,, k, the second, and so on.
a=0, the chain may or may not entrain aga g.. It en- 'Ehen we have the return map((t0+|):A57(to), with A

. . . . . =My ...M My . Each matrixM,, 1=<k=<N, occurs
trains atg. if and only if the fastest oscillatof has period N 2 . )
Pin, and the slowest has perid®,.,. This is becaus¢  €xactly once in the product. (1,1..,1) is aneigenvector of
=P.=P,... so that the situation leading to E§) may oc- ©achM and has eigenvalue 1. Therefore, it is also an eigen-
cur. Whena=0, it occurs already ibneoscillator has period Vector of A with eigenvalue 1. It corresponds to a perturba-

only if a long sequenceof the chain has period®,.,. eigenvalues have modui 1. To show this, we use a corol-

Loosely speaking, a finite chain more easily entrains gt a Y {0 the Perron—Frobenius theor¢@] which states that
<g. if a>0 than ifa=0. This observation was used to a positive[26] square matrixB has exactly one positive ei-

interpret the simulation resultSec. V. genvector with a positive eigenvalig. All other eigenval-
Proposition 3.The entrained states which fulfill Eq4) ~ Ues have moduli less tham,. For all natural numbersn,
are stable. (1,1,...,1) is aneigenvector toA™ with eigenvalue 1.

Proof of Proposition 3We investigate the fate of an orbit Th?tr;eflcl)re it fSUfﬁCES t(cz)l)stnm':vl\/tlhw is pOSitin‘? fgzrﬁs]omen.
~ N . . - ollows from Eq. atM, is non-negativ , since
d(t) = (1) + 5o (1), wheregp(t) is a point on the limit cycle , , - « i
corresponding to the entrained stafe: changes only when ? r((pg\)iamljh ﬁekr:_ﬁquaiivl %r a, an?gia’r?i_lr; Th(iirf
one oscillator fires. WhehR fires, the only components that ore AA1S also non-negative. suppose S hon-negative.

, Let S be the set of oscillatorg with 67,>0. ChooseS
change ared¢,_1 and d¢y 1. Say thatép— d¢' whenk — — . !
fires. Looking at Fig. 7, ={k}. It can be seen in Eq10) thatSchanges fronik} only

whenk fires, after which it becomedk—1k,k+1}. Sgrows
one step in the direction of decreasifigcreasing index

SPi+1= 0t 1t gh(x) —gh( 6. when the member oscillator with lowestighesj index fires.

It can also be seen in E4LO) that S never loses members.

We see that Thus S={1, ... N} after sufficiently long time. In other
words, columnk of A™ is positive for somem. Sincek is
X= 0t 81— POy /Psq. arbitrary, this means tha&™ is positive for somem. |
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FIG. 9. Properties of the mean period distribution. Rings corre-
spond toa=0, and stars ta= 1. (a) Mean period distributiom for
g=0.3 andg=0.7 fora=1. (b) Standard deviatiow| p]. (c) Test
5 of Eqg. (12). For a=0, §.=g. gave f=0.86, whereas.=0.

-7 | | ‘ln((é‘c_g)‘/éc)‘ | | 25 =0.6669 gaveB=0.88 (not shown. For a=1, §.=g. gave B8
=0.89(solid line), while §.=9.=0.7920 gave3=0.71.
FIG. 8. Properties of the cluster size distribution. Rings corre-

spond toa=0, and stars t@=1. (3 Cluster sizes were exponen- The terng, is defined to be th, that gives the best fit. For
tially distributed.N(s) is the number of clusters larger than or equal both values of, §.<g.. In the casea=0, bothg, andg

— _ 4 C (o ’ C C
to's. The parametera=1 andg=0.78 were usedb) Mean cluster 156 rise to acceptable fits, given the confidence intervals
S'Z?S<S> as funCt'AonS qu. (C.) Test of Eq'(l.l)' The te”PgC 'S [28]. Fora=1, the fit for§.=g. was barely acceptable. If
defined to be th&gc which gives the best fit. Foa=0, 9c=0c g =g, was used for both \(/:aluecs Gf it would be clear that
=2/3 gavea=1.89 (solid line), while §.=0.6662 gavea=1.56 ¢ Jc ..

gavea (solid ling), while G, gav aa—0F @y—1, SO thata becomes a system dependent critical

dashed ling Fora=1, §.=9g.= y2/3 gavea=5.05 (solid line), . . i,
\(Nhile gC:§f=o.7953 ggf/eagi 1.\9/)9_.Egrror gars are( approxir:nate exponent. However, the estimatedis very sensitive to the

95% confidence intervaksee Ref[28]). choice ofg., and it is not at all clear thai.=g. is appro-
priate in the simulations. To test the numerical stabilitgef
IV. SIMULATIONS in the casea=1, first T;=5000 andT ,,= 2000 was used for

6P=0.002 (Sec. I, then 5P in the range[ 0.0005,0.003

The behavior of the system around was studied by was used for the standafid=T,,=1000. This caused, to

means of simulation. The natural periods were taken from &ary in the interva[ 0.7943,0.796% giving « in the interval
square distribution with £P,<1.5[17]. The PRC is speci- [1.714,2.113. The choice of these parameters thus does not

fied in Fig. 1. A chain of 500 000 oscillators was used. seem to be responsible for the underestimatiogof It is,
We note first that fog>g., the chain always seemed to therefore, possible that the system used in the simulations
approach an entrained state which fuffills E4). indeed tends to entrain agesignificantly lower tharg,, and

Figure 8a) shows a cluster size distribution fgr=0.78  thus one cannot exclude the possibility thaf_o=a,_;.
anda=1. In this caseg.= \2/3~0.816[Eq. (7)]. The dis- Probably, a reliable answer to the question of universality
tribution is exponential to a good approximatip?7]. This  can only be found by analytical argument.
seemed to be the case for gkkg. and alla. No tendency Figure 9a) shows the mean period distribution in the
towards a critical, power law distribution @f, was seen. chain for two different values off for a=1. The standard
Figure 8b) shows that the mean cluster siZs$ diverge as  deviation o decreases wheg increases.o measures the
g—g.. In Fig. 8c), the divergences are fitted to power laws amount of disorder in the system, and is quite analogous to

the entropy. Figure ®) showso as a function ofg. The
(s)e(g.—9) . (11) finite simulation time gave rise to a residualbecause of
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remaining transients and a finite measurement time. In the r=lim Spa/N
figure, this can be seen as a flattening ofdlel curve close N—o0

to g.. In Fig. 9c) the convergences of to zero are fitted to

power laws

seems to increase continuously from zero at the first phase
ox (9.~ 9)P. (12  transition, and saturate at one at the second. A fuller account
of these simulations will be presented within a short time.

The data seem consistent with this assumption, even if n’SIOte that in one dimensiom, jumps discontinuously from

error bars are estimated for. Because of the residual, | Z€ro 10 one ay,, since cluster size&(N) cannot coexist
did not go any closer t@, than the point wherer frc;m with an island density larger than zero. In this sense, the
C

simulations withT,=5000 andT = 2000 started to drop be- phase transition described in this paper is first order. This
low o from the ;tandard simEIations with, =T = 1000 might have something to do with the absence of a critical
m .

Fora=1, G, was again significantly lower thag,. For ~ Cluster size distribution aj.

the same reasons as far the question whethes is univer- Two-dimensional lattices of locally coupled, pulse-
sal or not must be left open. coupled oscillators with random natural frequencies have

been studied numerically by Corral,iée, and Daz-Guilera
[29]. They used the Peskin type of interacti®ec. ), and
V. DISCUSSION studied avalanches, i.e., regions that fire at the same time due

The fact that the estimated critical couplifig extrapo- to infinitely fast f'iring.tra}nsr.nission. Their simulations sug-
lated from the data is smaller than the analytigal and that gested that the size distribution of th.e a'valgnches was cr!tlcal
the difference is greater in the case 1, is consistent with fOr @ range of parameter values, indicating self-organized
the remark made after Proposition 2. There it was stated th&fiticality (SOO. No signs of SOC have been seen in the
a finite chain tends to entrain belogy., and that this ten- Present simulations; in the one-dimensional chain, the cluster
dency is more pronounced wharr 0. This Suggests that the size distribution wasevercritical (SeC. |\0, and in the two-
error in the estimation is primarily a finite size effect, and notdimensional case the critical point seemed well defined. The
due to numerical errors. Thus a value &@f lower thang,  different results might be due to the fact that avalanches are
should be inserted in Eqél1) and(12). Therefore, the pos- not directly related to frequency clusters. The sizes and lo-
sibility should not be discarded that the critical exponents forcations of avalanches may vary from time to time, whereas
the system witta=0 are equal to those for the systems with frequency clusters by definition are time-independent re-
a=1. gions. However, if a system displays SOC as judged from the

The possibilities have not been considered that gor avalanche size distribution, it should do so as judged from
>g., other attractors may coexist with the entrained statehe cluster size distributio@ssuming that stationary clusters
fulfilling Eq. (4), or that other stable entrained states maydo exis). Therefore, it is more plausible that the differing
exist forg<g.. This would make the phase transition lessbehaviors are due to qualitative differences between our sys-
well defined. However, no indications of this were seen. Alltems. For example, avalanches are not allowed in the system
simulations were consistent with the hypothesis that the onlgtudied here, unless the cuopling is infinigg=<(1).
entrained states that existed were those fulfilling K. The assumption of a finite frequency bandwidth may
Nevertheless, in the case of a two-oscillator system, it waseem unnatural. In the case of cardiac pacemaker cells, there
shown by Ikedd10] that such entrained states could coexistis a lower bound on the natural period set by the refractory
either with entrained states where the oscillators triggeregeriod, during which the cell is recovering and no new action
each other, or with states where they delayed each othepotential can be initiated. However, there is no apparent up-
Generally, mutual triggering requires a small , whereas per bound. The excitable, impulse-transmitting nonpace-
mutual delay requires a largg_ . maker cells may be seen as oscillators with infinite natural

That o drops continuously to zero &, apparently ac- period. Like all other excitable cardiac cells, these can be
cording to a power law, indicates that we have an analogue ttsiggered shortly after a preceding firing, so that the entire
a continuougcritical) phase transition. The power law diver- heart can entrain to a common frequency. The problem with
gence of(s) is similar to the divergence of the correlation our model is that the PRC is independent of the natural pe-
length at the critical point. However, the cluster size distri-riod P, . This means that during a timg_ P, oscillatork can
bution is not critical aig,. Preliminary simulations indicate only be delayed, so that it cannot be entrained to a period
that in two dimensions, there is an even closer analogue to ghorter than this. Therefore, our model can simulate cardiac
critical phase transition. There, the sigg,, of the largest tissue realistically only if a quite narrow bandwidth is as-
cluster diverges at a critical coupling, after which the smallersumed. The occurrence of long natural periods would make
clusters become islands in an entrained sea, just like islandsipossible any phase transition to states with order param-
of opposing spins in an Ising magnet beldw. At the criti-  eterr>0 in a one-dimensional chain, since such slow oscil-
cal coupling, the cluster sizes are critically distributed.gAs lators would break the entrainment at finite intervals. In mul-
increases further, the islands get smaller, and finally théidimensional lattices, however, the slow oscillators could be
whole lattice frequency entrains at a second critical couplingislands in an entrained sea, so that states wittD were
The order parameter possible, but states with=1 still impossible.
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To get a deeper understanding of the kind of phase tranwvay, a proper classification of the phase transitions might
sitions described in this paper, one should ideally invent also be obtained. As discussed above, the transition in the
renormalization group from which critical exponents can beone-dimensional chain had features reminiscent both of a

deduced, and their possible universality determined. In thigirst- and second-order transition.

[1] A. T. Winfree, J. Theor. Biol16, 15 (1967).

[2] A. T. Winfree, The Geometry of Biological TiméSpringer,
New York, 1980.

[3] Y. Kuramoto, Prog. Theor. Phys. Supfb, 223 (1984).

firing interval variability of up to 10%T. Opthof et al,, J.
Mol. Cell. Cardiol.19, 923(1987].

[18] M. Masson-Peet, W. K. Bleeker, and D. Gros, Circ. Ret5,

621(1979; W. K. Bleekeret al, ibid. 46, 11 (1980.

[4] Frequency clusters have been found experimentally in thé19] P. Ostborn, B. Wohlfart, and G. Ohte J. Theor. Biol211, 201

rhythmic electric activity of the small intestine. In the intact
organ, the frequency decreased in steps in the direction awa
from the stomach. In contrast, the frequencies of small piece

cut from the intestine decreased continuoydly E. Diamant
and A. Borthoff, Am. J. Physiol216, 301(1969].

[5] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor

Phys.77, 1005(1987.
[6] S. H. Strogatz and R. E. Mirollo, Physicadl, 143(1988.

(2001); P. Cstborn, G. Ohla, and B. Wohlfartjbid. 211, 219
(200).

20] C. S. PeskinMathematical Aspects of Heart Physiolo@you-

rant Institute of Mathematical Sciences, New York University,
New York, 1975.

[21] W. K. Bleekeret al, Circ. Res.46, 11 (1980.
122] J. Buck, Q. Rev. Biol63, 265(1988.
[23] A. H. Cohen, P. J. Holmes, and R. H. Rand, J. Math. Big.

345(1982.

[7] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor
Phys.79, 1069(1988.
[8] N. Kopell and G. B. Ermentrout, Commun. Pure Appl. Math.

{24] This is the main difference to systefd). There, if AT,_;
=AT, in an entrained staté,fires with its natural period since
the sine function is odd. Thus, thaT,|:s grow without bound

39, 623(1986.
[9] J. L. Rogers and L. T. Wille, Phys. Rev.5#, R2193(1996.

[10] N. Ikeda, Biol. Cybern43, 157 (1982.

[11] A. A. Brailove, Int. J. Bifurcation Chaos Appl. Sci. Eng.341
(1992.

[12] R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Mats0,
1645(1990.

[13] A. Diaz-Guilera, C. J. Rez;, and A. Arenas, Phys. Rev. 5,
3820(1998; A. Diaz-Guilera and C. J. Pez-Vicente, Int. J.
Bifurcation Chaos Appl. Sci. En@, 2203(1999.

[14] W. Senn and R. Urbanczik, SIANSoc. Ind. Appl. Math. J.
Appl. Math. 61, 1143(2001).

[15] T. Sano, T. Sawanobori, and H. Adaniya, Am. J. Phy<i8h,
H379(1978; J. Jalifeet al, ibid. 238 H307(1980; J. M. B.

if a longer and longer section of the chain is to be advarioed
delayed. In the system used here, this problem arises only in
the delay casésee proof of Proposition)2

[25] P. LancastefTheory of MatricegAcademic, New York, 19609
[26] A vector or matrix is positivénon-negativgif all elements are

positive (non-negative real numbers.

[27] The two largest clusters are somewhat oversized. Clogg to

there was typically one or two such clusters. | tentatively at-
tribute this to the finiteSP (Sec. I). As g. is approached from
below, the frequency difference between two neighiiosters
decreasefFig. 9), so that it at some point is typically less than
S6P. After that, the cluster sizes are severely overestimated.
Specifically, it is the large clusters that have similar frequen-
cies, while the smaller ones are more extrgimat shown).

Anumonwoet al., Circ. Res.68, 1138(1991).

[16] The size of the rabbit sinus node is roughlix 38X 0.2 mm.
(Fig. 4 in[l. Ten Veldeet al, Circ. Res.76, 802 (1995]). A
typical rabbit sinus node cell volume is 5000m? [J. C. De-
nyer and H. F. Brown, J. PhysidlLondon 428 405(1990]. therefore Ifs)+1.96y(s)/N.

This gives~400 000 cells. [29] A. Corral, C. J. Peez, and A. Daz-Guilera, Phys. Rev. Lett.

[17] The firing interval ratio between the fastest and slowest rabbit 78, 1492(1997.
sinus node cells is at least tbl. Honjo and M. R. Boyett, J. [30] N. Kopell and G. B. Ermentrout, SIAM J. Appl. Matth0,
Physiol. (London 452 128P(1992]. Each cell also shows a 1014(1990.

[28] Ninety five percent confidence intervals were calculated from
the assumption of exponential cluster size distribution. This led
to the result that if the number of clusters is larggsins
normally distributed with variancés)/N. The intervals are

016105-9



