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In an accompanying study, it was seen that most cardiac arrhythmias that were simulated
during poor intercellular coupling in the sinus node, were the same as those obtained in
a two-element system in which one element su!ered from a strong leakage current. This
element corresponds to the sinus node periphery and is thus the one which feeds the atrium. In
this paper, the interior element was replaced by a periodic stimulator. The dynamics of the
peripheral element is then determined by its phase response curve. Phase response curves for
sinus node elements subject to leakage were simulated for many di!erent amplitudes of
depolarizing stimuli. Simulations with circle maps based on these curves produced the same
sequence of progressing levels of exit block as stimulus strength decreased, as did the
two-element system when coupling strength was reduced. The bifurcations of the circle maps
leading to the observed rhythms were identi"ed. We found that the essential qualities of the
phase response curves were determined by generally accepted properties of membrane cur-
rents. This suggests that the observed rhythms and bifurcations are generic.

( 2001 Academic Press
Introduction

Circle maps give a new phase as a function of an
old phase. They are thus one-dimensional maps.
When these are used to model physical systems,
they give the state of the system at discrete time
t
k`1

as a function of the state at time t
k
, where the

state is described by a single number (Kaplan
& Glass, 1995). This is the simplest possible
choice of a model. As such, it facilitates an under-
standing of the dynamics, provided that the es-
sential qualities of the system can be carried into
the map.

In an accompanying study, a two-element
model of a weakly coupled sinus node (SN) was
introduced. Element 1 corresponded to the SN
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interior, and element 2 to a slower peripheral SN
domain. Element 2 was subjected to a strong
leakage current, mimicking the in#uence from the
atrium. In this study, element 1 is treated as
a periodic stimulator, perturbing the slowly oscil-
lating element 2.

Circle maps can be used to predict the response
of an oscillator to periodic perturbation. The
map then gives the phase in the cycle of the
perturbed oscillator just before the (n#1)-th
stimulus as a function of the phase just before the
n-th. The experiments by Guevara et al. (1981)
showed that the dynamics of periodically stimu-
lated aggregates of automatic embryonic chick
heart cells, was well mimicked by appropriate
circle maps. This is due to the fact that oscillating
cardiac cells return quickly to their limit cycles
when perturbed. If the stimulation interval is not
( 2001 Academic Press



FIG. 1. De"nition of the PRC h(u) for element 2.
u"t/P

2
, where P

2
is the natural period of element 2. t is the

time at which a square current pulse with duration 70 ms
and amplitude A was delivered. h(u)"¹/P

2
.
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too short, they are therefore close to their limit
cycle every time they are stimulated, and their
state is well described by a single phase variable.
In the language of dynamical system theory, they
are strongly dissipative oscillators.

To construct appropriate circle maps, phase
response curves (PRCs) are needed. These give
the relative delay/advance of the subsequent
upshot as a function of the phase of an injected
stimulus. In the present study, the stimuli to the
oscillator under consideration are intended to
mimic those from central SN cells when they "re.
The relevant PRCs are then those obtained when
depolarizing pulses with a duration not far from
that of an action potential are injected. Such
PRCs have been experimentally measured by
Sano et al. (1978) using aggregates of rabbit SN
cells, and by Jalife et al. (1980) using aggregates of
kitten SN cells. For a single rabbit SN cell, the
PRC has been inferred from experiments in
which the cell was periodically perturbed with
di!erent frequencies, and locked in di!erent en-
trainment ratios (Anumonwo et al., 1991). All
these PRCs showed the same qualities (to be
discussed below). These studies suggest that en-
trained cell aggregates respond to pulses in the
same way as do single cells. This works in our
favour, since the oscillator whose PRC we want
to determine (element 2) is a peripheral SN fre-
quency domain containing an unknown number
of cells (see the accompanying paper). However,
this domain di!ers from the cell aggregates in the
studies mentioned above, in that it experiences
a strong hyperpolarizing current. To our know-
ledge, no one has measured experimental PRCs
under this condition. Therefore, we simulated
them with the same version of the Irisawa
& Noma (1982) SN element model as was used in
the accompanying study.

Our intention was to investigate whether the
PRC-based circle maps showed the same kind of
rhythms when stimulus strength decreased as did
the two-element- and network models of the SN
when coupling conductance decreased. This was
indeed the case, and since the dynamics of the
circle maps is determined by the shape of the
PRCs, this shape apparently determined the ob-
served arrhythmias in the accompanying study.
We analysed the origin of this shape, and the
changes that occurred when stimulus strength
was altered. The essential qualities could be
traced back to generally accepted properties of
membrane currents. This makes it plausible that
the observed rhythms are generic during poor
intercellular coupling in the SN. Because of their
presumed generality, we also analysed the circle
map bifurcations leading to these rhythms.

Methods

The peripheral SN element was simulated in
the same way as element 2 in Fig. 5(a) of the
accompanying paper. That is, the same simpli"ed
version of the SN element model of Irisawa
& Noma (1982) was used. Q was set to 2, and
a bias current of 1.4 A/F was added. The model
was integrated with the forward Euler method
with a time step of 1 ms. This led to a natural
period P

2
"1952 ms.

The symbols used in the de"nition of the PRC
h are introduced in Fig. 1. h was de"ned as
h(u)"¹/P

2
, where u"t/P

2
, and 0)t)P

2
. h is

thus the ratio between the "ring interval after
perturbation (¹ ) and the natural interval (P

2
).

The family of PRCs h for di!erent pulse ampli-
tudes A will be referred to as h

A
. The value of

h was simulated for pulses at 100 evenly spaced
phases u. The pulse width (70 ms) was chosen to
approximately equal that of a perturbing action
potential from the interior element 1.

The standard procedure to obtain the relevant
circle map from the PRC is described below.
Since it is assumed that element 2 is somewhere
in its limit cycle every time it is perturbed, h can



FIG. 2. How eqns (1) and (2) were obtained. (a) u
n
is the

phase of element 2 just before element 1 "res for the n-th
time. Du

n
is the immediate phase shift of element 2 when

element 1 "res. ¹
n
is the expected "ring interval of element 2

(if element 1 does not "re again until element 2 "res the next
time). Given the PRC h(u), Du

n
is obtained as Du

n
"

(du/dt) Dt
n
"(1/P

2
) (P

2
!¹

n
)"1!h (u

n
). (b) Graphical

illustration of the construction of the circle map M
from h. (c) Determination of a "ring instant q of element
2 between the n-th and (n#1)-th "rings of element 1, given
u
n`1

[eqn (2)].

FIG. 3. The PRC h (Fig. 1) for di!erent values of A. u
c

denotes the phase at which h crossed 1 from above. u
c

increased towards 1 as A decreased.
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be interpreted as follows: when element 1 "res at
phase u in the cycle of element 2, the latter
element stays in the cycle, but its phase immedi-
ately shifts to u#Du, where Du"1!h(u)
[Fig. 2(a)]. Otherwise, du/dt"1/P

2
. Then, if P

1
is

the period of element 1, just before the next "ring
of this element, u will have increased by the
amount P

1
(du/dt)"P

1
/P

2
. Thus,

u
n`1

"Gun
!Du

n
#

P
1

P
2
H modulo 1,

Du
n
"1!h(u

n
), (1)
where u
n
is the phase in the cycle of element 2 just

before the n-th "ring of element 1. The modulo1
operation is performed since 0)u

n
(1. Given

h
A
, eqn (1) de"nes a family of circle maps which

will be referred to as M
A
. Iterations of these maps

were carried out using linear interpolation
between the 100 measured points.

To construct a bifurcation diagram using
eqn (1) corresponding to that in Fig. 5(a) in
the accompanying paper, the sequence of "ring
intervals for element 2 is to be determined. This
was done as follows: if u

n
#Du

n
#P

1
/P

2
'1,

then element 2 has "red between the n-th and
(n#1)-th "ring of element 1. The "ring instant
q becomes [Fig. 2(c)]

q"(n#1)P
1
!u

n`1
P
2
. (2)

The intervals I
k
are then obtained as I

k
"q

k`1
!q

k
.

Results

CIRCLE MAP DYNAMICS

A selection of PRCs for the peripheral element
2 from the family h

A
is shown in Fig. 3.

The bifurcation diagram is shown in Fig. 4(a).
Its structure was very similar to that of the orig-
inal one [Fig. 5(a) in the accompanying paper],
at least down to the 5 : 1 conduction zone. The



FIG. 4. (a) Bifurcation diagram corresponding to that in Fig. 5(a) in the accompanying paper, using eqns (1) and (2). The
pulse amplitude A was bifurcation parameter instead of g. The dynamics at the marked amplitudes A

k
was studied further (see

also Fig. 5). (b) Circle maps M(m) in regions of the bifurcation diagram with di!erent block patterns. Dots mark stable "xed
points (see text). All bifurcations in these maps occurred since the vertical parts of M(m) moved to the right when u

c
grew as

A decreased (compare the corresponding PRCs h on top). (c) M gave rise to a 4 : 3 Wenckebach rhythm at A
1
"0.94 A/F (right

panel), and M(2) produced a 7 : 3 W
2
rhythm at A

2
"0.46 A/F (left panel). In the right panel the ever repeating phases I}IV are

marked, and their relation to the 4 : 3 rhythm shown. In the left panel, the recurrent phases 1}7 are marked and their relation
to the 7 : 3 rhythm shown.
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W
1
, W

2
, W

3
and W

4
zones were successfully re-

produced. The only di!erence was that for some
parameter values in the circle map W

1
and

W
2

zones, frequency locking was lost and we had
quasi-periodic motion (Ott, 1993). The occurring
intervals "ll in vertical lines in Fig. 4(a). The
prolonged irregular intervals in the C

2
zone were
reproduced by M
A
, while the C

1
zone was lack-

ing. We note that frequency entrainment settled
at 1 A/F. The amplitude of a model SN cell ac-
tion potential is about 80 mV. If it had a square
shape, it would give rise to a gap junction square
current pulse with amplitude 1 A/F for g"12.5
S/F. This is close to the true entrainment value



FIG. 5. The circle map C
2

region. (a) The region was entered when M(6) lost its six stable "xed points in a tangent
bifurcation (bottom row). The 7 : 1 zone was entered when seven already existing "xed points in M(7) simultaneously became
stable, that is, when the absolute value of the slope of M(7) at the "xed points became less than one (top row). (b) The map M at
A

3
"0.026 A/F, showing chaotic dynamics. The "xpoints u* and u appeared because of the high peak in h (top). Periodic

stimulation by element 1 starting exactly at one "xpoint makes element 2 quiescent. In practice, some very long "ring intervals
appeared (see text).

-The "xed points must appear simultaneously because
M(2) cannot have a single "xpoint. If u* is a "xpoint of M(2),
then M(u*) must also be. Since M has no "xpoint for this
A (there is no 1 : 1 entrainment), u* and M(u*) must be
distinct.
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g+12 S/F [Fig. 5(a) in the accompanying
paper].

Figure 4(b) shows circle maps M(m) at di!erent
positions in the bifurcation diagram. These maps
are de"ned according to the example
u
n`2

"M(u
n`1

)"M(M(u
n
))"M(2)(u

n
). Stable

"xed points are marked with dots. That u* is
a "xpoint of M(m) means that u*"M(m)(u*). u*
is stable if and only if DdM(m)/du D(1 at u*. That
is, points near u* will approach u* under iter-
ation of M(m) if and only if this condition is
ful"led (Kaplan & Glass, 1995). If there is a peri-
odic m: 1 block, then M(m) will have m stable "xed
points, because then the system returns to its
original state after m "rings of element 1, so that
we have M(m)(u

n
)"u

n`m
"u

n
for each of the

m di!erent phases occurring in this cycle.
Consider the maps M in Fig. 4(b) (bottom

row). The vertical segment of M appears at the
phase u

c
where h passes one from above. As

A decreased, u
c

increased (compare the corre-
sponding PRCs h on top). Thus, the vertical seg-
ment of M is shifted to the right. For the critical
amplitude (coupling), this leads to loss of the
stable "xpoint, and thus loss of 1 : 1 entrainment.
An event of this kind is called a tangent bifurca-
tion, since the graph is tangent to the diagonal at
the critical amplitude. Looking at the maps M(2)
in Fig. 4(b) (middle row), it is seen that the 2 : 1
block was created due to a tangent bifurcation in
which two stable "xed points (and two unstable)
appeared simultaneously-. This event took place
because u

c
continued to grow as A decreased.

The map moved to the right. At the critical am-
plitude, the two corners (a and b) of M(2) crossed
the diagonal. In the 2 : 1 region, the second verti-
cal segment of M(2) appeared at u

c
, and the "rst

at its pre-image M(~1)(u
c
). As A decreased fur-

ther*and u
c
increased*the drift to the right of

M(2) continued. Finally the two stable "xed
points were lost in a tangent bifurcation.



FIG. 6. (a) Qualitatively di!erent responses to pulses with
A"0.02 A/F delivered to element 2 at u

1
"0.7, u

2
"0.77,

and u
3
"0.8. At u

1
, a sub-threshold potential de#ection

and a small "ring delay was produced. At u
2
, there was

a super-threshold de#ection, but no upshot, and a large
delay. At u

3
, an upshot was triggered. Solid lines correspond

to unperturbed activity. Top: Ca-inactivation f. Bottom:
Membrane potential. The thin vertical line illustrates that
after perturbation at u

2
(dash}dotted lines), when potential

has relaxed back to normal, f was still lower than normal
(see text). (b) E!ects of pulses delivered at phases u

I
"0.609

and u
II
"0.780 giving maximum "ring delay for A

I
"0.1

and A
II
"0.014 A/F. Solid lines correspond to unperturbed

activity. Top: i
h
-activation variable q. Slow reactivation

makes i
h
stronger during the weaker pulse (see text). Bottom:

Membrane potential.
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The same mechanism was responsible for the
creation [Fig. 4(b), top row] and destruction of
the 3 : 1 block region, and also for the 4 : 1, 5 : 1
and 6 : 1 regions. Four, "ve and six vertical seg-
ments of M(4), M(5) and M(6), respectively, drifted
to the right because of their connection with u

c
.

The reason why the width of the m : 1 regions
decreased with increasing m, is that u

c
increased

with greater and greater speed when A decreased
(Fig. 3), so that "xed points were created and
destroyed more and more quickly.

Figure 4(c) shows how the W
1

and W
2

rhythms
arose in M

A
. At amplitude A

1
"0.94 A/F, there

was a 4 : 3 Wenckebach cycle (right panel). It is
shown how the attractive set of ever repeating
phases I}IV relates to the rhythm [compare with
Fig. 5(b) in the accompanying paper]. The lost
"ring occurred when the orbit slipped through
the narrow tunnel between the map graph and
the diagonal. The closer A is to the bifurcation
point, at which the "xpoint is lost, the narrower is
the gap, and the more iterations are needed to
pass it. More "rings are transmitted before one is
lost [Fig. 6 in the accompanying paper]. This
mechanism behind Wenckebach rhythms has
been described previously by Honerkamp (1983).
The W

2
rhythms were Wenckebach-like since

they were created in an analogous way. Consider-
ing M(2) instead of M, the map again had a near
tangency with the diagonal and vertical seg-
ments. At A

2
"0.46 A/F there was a 7 : 3 rhythm

[Fig. 4(c), left panel]. The relation between the
invariant phases 1}7 and the rhythm is shown
[compare with Fig. 5(c) in the accompanying
paper]. All the circle maps in the W

1
and

W
2

regions were invertible, and thus the aperi-
odic behaviour seen for some A, as mentioned
above, cannot be chaotic (Ott, 1993), but must be
quasi-periodic. Considering the shape of M(3)
[Fig. 4(b), top row], we see why the Wenckebach-
like W

3
rhythms appeared after the loss of its

three stable "xed points.
Figure 5(a) shows the appearance and disap-

pearance of the region C
2

in M
A
. As mentioned

above, the 6 : 1 region was destroyed in a tangent
bifurcation in which the six stable "xpoints of
M(6) disappeared (bottom row). However, the
7 : 1 region was not created in a tangent bifurca-
tion. Here, seven already existing "xed points of
M(7) simultaneously became stable (top row).
These "xed points existed because of the seven
dips in M(7), which were due to a dip in M. In
Fig. 5(b), M is shown at A

3
"0.026 A/F. The dip
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in M is the high peak in h apparent for low
amplitude pulses turned upside down (compare
h on top). This peak thus made all maps M(m)
non-invertible, thereby enabling chaotic dynam-
ics (Ott, 1993). Iteration of M at A

3
from the

initial condition u
0
"0.2 resulted in apparently

chaotic motion with a positive Lyapunov expo-
nent j"0.24. The Lyapunov exponent measures
the exponential rate of divergence/convergence of
the distance between two nearby iteration se-
quences. Since each iteration advances the system
P
1
"280 ms, the exponent for the #ow would be

0.24/0.28+0.86 s~1.
Looking instead in the direction of increasing

A, the 7 : 1 region was left after the seven "xpoints
of M(7) became unstable as dM(m)/du dropped
below !1. This is a period-doubling bifurcation
(Ott, 1993), and is the beginning of a period-
doubling cascade leading to chaos. The inset in
Fig. 5(a) in the accompanying paper, shows that
the C

2
region in the two-element system indeed

was entered from the 7 : 1 region via an in"nite
sequence of period-doublings. This behaviour is
thus explained by the appearance of the peak in h.

The peak in h was so high that it created two
unstable "xed points u* and u*@ in M [Fig. 5(b)].
If element 2 is perturbed at, say, phase u* by
element 1, its phase is shifted back (Du(0) in
such a way that when element 1 "res next time, it
has just had time to regain phase u*. A paradoxi-
cal situation arises that repetitive stimulation
may cause element 2 to never reach u"1, i.e. can
make it quiescent. However, since u* is unstable,
this situation will never occur in practice. Never-
theless, if we have chaotic dynamics, some phases
in the iterations will come very close to u*. The
following phases will then slowly slide away from
u*, creating instead a very long "ring interval.
Qualitatively, this is probably the mechanism
behind the long intervals appearing in the C

1
and

C
2

regions in the original two-element system
[Fig. 5(a) in the accompanying paper].

The C
1

region in the two-element system was
also entered via a period doubling cascade
[Fig. 5(a) in the accompanying paper]. Looking
at M(6) in Fig. 5(a), we see that if its six dips had
survived throughout the 6 : 1 region, then, as the
map drifted to the left when A increased, the six
"xed points would again have become unstable
in a period doubling bifurcation. However, the
dips happened to disappear before that, and
therefore no C

1
region appeared in M

A
.

RELATIONS BETWEEN PRC SHAPE AND MEMBRANE

CURRENT DYNAMICS

We note "rst that PRCs obtained from normal
model elements (without leakage) resemble those
determined experimentally from rabbit SN by
Sano et al. (1978) and from kitten SN by Jalife
et al. (1980). Also, it was hard to distinguish the
normal element PRCs resulting from our simpli-
"ed Irisawa & Noma model from those obtained
with the full model. These, and related quantities,
are studied in detail by Guevara & Jongsma
(1990).

Consider Fig. 3. All curves were bipolar, which
means that h'1 for u(u

c
, and h(1 for

u'u
c
. u

c
decreased with increasing A, but

slower and slower, so that it reached an asymp-
totic value.

A study of the model variables revealed the
following mechanism for the "ring delay com-
mon for all A at very early phases. At the late
stages of an upshot, the Ca-channel is inactivated
to a large extent*that is, the variable f in the
model is well below 1. Since the upshot is due to
i
C!

, it is impossible to trigger the cell. Inactivation
releases slowly when the potential drops. If a de-
polarizing pulse arrives, release is delayed. For
some time, i

C!
will be weaker than normal. Since

this current is important for the slow dia-
stolic depolarization, the "ring threshold will be
reached later.

On the other hand, if the pulse comes late
enough (after u

c
), the only e!ect is that of trigger-

ing. We get h(1.
Now consider a pulse injected at a phase just

before u
c
, which does not bring the potential to

"ring threshold, but just below. The potential
increase accelerates the slow Ca-channel inac-
tivation. Due to the slow release of this
inactivation when potential relaxes back, and
the potential becomes identical with the one
obtained if no pulse was applied, f will have
a lower value than in the unperturbed case. The
action potential will again be delayed. This situ-
ation is illustrated in Fig. 6(a). After perturbation
at phase u

2
(dash}dotted lines), the potential

became identical with the unperturbed one (solid
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line) at the thin vertical line. However, the per-
turbed value of f was considerably lower at this
moment.

The qualitatively di!erent responses to per-
turbations just before and just after u

c
produced

an almost vertical segment of h (for appreciable
A). This segment was essential for the creation of
the Wenckebach rhythms shown in Fig. 4(c).

Clearly, since the potential gap to "ring thre-
shold increases from zero when u decreases from
1, u

c
continuously decreases from 1 with increas-

ing pulse amplitude A. The reason why the rate of
decrease dropped, is that the temporal increase in
i
C!

during the pulse was lower if initial potential
was lower, since then we fell more below the
Ca-channel activation threshold. Therefore
a pulse of given strength received less and less
help from i

C!
in order to raise potential to "ring

threshold when u decreased. That u
c
decreased

more slowly with A for higher A was the reason
why the m : 1 conduction plateaux in Fig. 4(a)
were wider for higher A (lower m).

The most remarkable thing about the PRCs is
the high peak appearing before u

c
for weak pulses

(Fig. 3). Consider again Fig. 6(a). A pulse applied
at u

1
produced a sub-threshold potential de#ec-

tion, in the sense that it relaxed back immediately
after the pulse ended. f was only moderately
reduced, and the subsequent upshot only slightly
delayed. A pulse at u

3
triggered an action poten-

tial. The pulse at u
2

produced a super-threshold
response, but the leakage was so strong that it
competed with the activated Ca-current, preven-
ting the formation of an upshot. The only e!ect
was the long-lasting Ca-current inactivation,
leading to a long "ring delay.

We think the reason why this e!ect was much
more pronounced for weak pulses is to be found
in the dynamics of the hyperpolarization-
activated current i

h
. This current was essential

for the slow diastolic depolarization in the
drained model element, being about twice as
strong as i

C!
at this stage. It activated with a very

long time constant (2}3 s) after a "ring (Irisawa
& Noma, 1982), so that its activation variable
q increased throughout the slow depolarization
[Fig. 6(b)]. For weaker pulses, u

c
and the peak in

the PRC appeared for later phases. Therefore,
after the pulse, q was higher and i

h
stronger. It

therefore helped to keep up the potential in the
super-threshold de#ection for a longer time, lead-
ing to a later renormalization of membrane activ-
ity and a longer "ring delay. In Fig. 6(b) are
shown the potentials when pulses were applied at
the phases producing maximum "ring delay for
A"0.1 A/F (dotted lines) and A"0.014 A/F
(dashed line). In the top panel, it is seen that
q stayed at a higher value for the weaker pulse.

For stronger pulses, the curves h
A

did not
exceed 1 much. They were almost horizontal for
u(u

c
. This leads to invertible maps M, which

exclude chaotic dynamics. The reason for this
#atness of h is simply that the moderate "ring
delays are divided with a very long natural period
P
2
. The lack of chaos in the two-element system

for higher conductances g is therefore probably
a model-independent property.

Discussion

The validity of the two-element model of the
SN was discussed in the accompanying paper.
Here we discuss the simplifying assumptions
needed to transform this system into circle maps.
We also identify which PRC qualities were vital
for the appearance of the bifurcation diagram
[Fig. 5(a) in the accompanying paper, and
Fig. 4(a) in this paper].

The reason why element 1 could be approxi-
mated by a periodic simulator is that for a leak-
age current so large that it almost prevents a cell
from "ring spontaneously, such as the one #ow-
ing out of element 2, the "ring interval of this cell
increases rapidly with the leakage (Watanabe
et al., 1995). In other words, small currents have
large e!ect on the intervals. Thus a pulse de-
livered by element 1 has much larger e!ect on the
"ring intervals of element 2 than vice versa. Ele-
ment 2 tends to "re soon after a "ring of element
1. Either element 2 is triggered, or the leakage
prevents it from reaching threshold before the
next perturbation from element 1. This element
will therefore be perturbed only at small phases
in its cycle. Such perturbations only produce
small changes in the "ring interval (see Fig. 3 or
the experimental PRCs in Sano et al., 1978 or
Jalife et al., 1980).

As mentioned before, the circle map approach
can only be successful if the perturbed oscillator
is close to its limit cycle every time it is
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stimulated. The similarity between the bifurca-
tion diagram in this study [Fig. 4(a)], and the
two-element diagram in the accompanying pa-
per, in itself con"rms this assumption. However,
for the weaker pulse in Fig. 6(b) it is seen that
element 2 certainly did not return close to the
limit cycle within the period 280 ms of element 1.
The potential trace seemed to regain normal
shape after &600 ms, and q stayed higher than
normal in the whole time range. Therefore, in the
very weak amplitude region, the map does not
apply for phases u

n
at which we are close to the

top of the high peak in h. This is probably the
reason why M

A
does not reproduce the chaotic

region C
2

with quantitative accuracy, and C
1

not
at all.

The PRC qualities (Fig. 3) essential for the
appearance of the bifurcation diagrams (Fig. 4 in
this paper, and Fig. 5 in the accompanying one)
were identi"ed to be: (1) that h'1 for small
phases and h(1 for larger phases, (2) that h was
vertical at this polarity shift, (3) that the vertical
segment moved to the right when pulse ampli-
tude decreased, (4) that it moved with greater and
greater speed, (5) that h had a high peak for very
weak pulses, and (6) that it did not exceed 1 sig-
ni"cantly for greater amplitudes. The causes of
these qualities are analysed above, and we argue
that they are quite model independent. Qualities
(1)}(3) were seen in all experimental PRC
measurements mentioned in the introduction.

Due to the possible relevance to SA exit block
rhythms, we think that experiments measuring
PRCs of SN cells subject to a strong hyper-
polarizing current are called for. In particular,
it would be interesting to see whether the
curious high peak in the weak pulse PRCs
arises in experiment also. This peak was respon-
sible for the chaotic rhythms in the bifurcation
diagram.
This study was supported by the Swedish Medical
Research Council (Grant No 14X-08664).
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