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Frequency entrainment in long chains of oscillators with random natural frequencies
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We study oscillator chains of the form,=wy+K[['(d_1— P+ (drss— )], where ¢y e[0,2m) is the
phase of oscillatok. In the thermodynamic limit where the number of oscillators goes to infinity, for suitable
choices ofl'(x), we prove that there is a critical coupling strength above which a stable frequency-entrained
state exists, but below which the probability is zero to have such a state. It is assumed that the natural
frequencies are random with finite bandwidth. A crucial conditionI®Rr) is that it is nonodd, i.e.|l(x)
+T'(-x)| #0. The interest in the results comes from the fact that any chain of limit-cycle oscillators can be
described by equations of the above form in the limits of weak coupling and narrow distribution of natural
frequencies.
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I. INTRODUCTION coupling and narrow distribution of natural frequencies, as

- shown by Y. Kuramotd4]. It has also been shown that cer-

ciII:ti?goz:;;eogra}r:ar?:n;u;?g:: 8; gg::err)jlzg Ig;gﬂ%f;z (;: tain kinds of Josephson junction arrays can be mapped onto
. ) .~ . _models of this kind5].

pacemaker cells in the brain and heart, swarms of fireflies, Models of the form(2) have been extensively studied.

and applauding audiences. Most often there is a spread in th\‘ﬁost often it is assumed that all coupling functions are the

ngturgl frequenue; of the individual oscillators, and the Fou'same, ie., thal';(x)=I'(x). Kuramoto himself introduced
pling is such that it tends to even out these frequency dlfferi e model['(x)=sin(x). He showed that there is a phase tran-
ences. A natural question to ask is whether there is a criticaf1 B ) P

coupling strength at which a macroscopic number oscil- sition to a nonzero order parametsf the coupli_ng is global
lators frequency entrain in the thermodynamic liNit oo, (all-to-all) [4]. In the case of localnearest-neighbarcou-
and we enter a regime of collective oscillation. In the lan-P!ing, Stgog_all_ttz afnd I}/I|rollc[6] shovvted_ that f?r_iny_ finité,
guage of statistical physics, this can be expressed as a phatg1 probability for frequency entrainmerit=1) is zero

transition at which the order parametebecomes nonzero whenever the oscillators are placed on a finite-dimensional
" lattice, and the natural frequencies are random with nonzero

where . L .
variance. However, it is still an open question as to whether
r= lim npa/N. (1) states with 6<r<1 may exist for finiteK. The proof of
N Strogatz and Mirollo rests on the fact that the sine function is

Here,Nyaxis the number of members in the largest connected®dd. Several authors have pointed out that the appearance of
cluster of entrained oscillators. Such a phase transition i§equency entrainment is facilitated by nonodd coupling, i.e.,
relevant, for example, in the sinus node in the heart. It conby T'(X)+I'(=x) #0. Sakaguchiet al. [7] gave a heuristic
sists of millions of pacemaker cells, which have to work at adrgument of why a chain of oscillators withi(x) =sin(x
common frequency to trigger regular heartbeats, despite thea) +sin(a) and random natural frequencies may frequency
fact that their natural frequencies diffg2]. entrain if «# 0. Kopell and Ermentrouf8] showed that a
We have previously proved that a phase transition of thigionodd coupling enables frequency entrainment in a chain
kind takes place in a one-dimensional chain of pulse-couplewhere the natural frequencies obeéy.;~w|=0(1/N).
oscillators, interacting like cardiac pacemaker cegl8j. However, this smoothness condition does not allow random
There, the order parameterjumps discontinuously from natural frequencies. Rogers and Will@] considered the
zero to one at a critical coupling strength, provided the natuKuramoto oscillator chaif’(x)=sin(x) with random natural
ral frequencies are random with a sufficiently narrow bandfrequencies wherK«y™®. Here,y is the distance between
width. It would be interesting to obtain a corresponding re-two oscillators. They found numerically that states with

sult for oscillators obeying the equation =1 are possible for finit&k when «<2. This is consistent
. with the analytical results that showed they are possible with
¢k=wk+KE Ci(dy = &), (2)  global coupling(e=0), but impossible with local coupling
Jenk (a:OC)

whereg¢, € [0, 27) is the phase of oscillatds, n, is the set of

oscillators coupled tk, and I'y(x) are 2r-periodic func-

tions. This is done in the present study. The interest in equa- Il. ANALYSIS

tions of the form(2) comes from the fact that they describe

any network of limit-cycle oscillators in the limits of weak In the present paper, we consider an oscillator chain
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(@ (%) (Q,A¢) = fHa). (8)

In other words, there is at most one entrained stteA ¢)
of the desired kind5) for a given assignment of natural
frequencies.

As expected from previous work, it turns out that the
nonoddity, or asymmetry, of (x) is crucial for the appear-

> X ance of frequency entrainment. We define the even “asym-
metry function”d(x) as
d(x) =T'(x) +I'(=x) 9
) [Fig. 1(b)]. For the Kuramoto model whel&(x) =sin(x), we

haved(x)=0. For simplicity, we restrict our interest to cou-
pling functionsI'(x), for which d(x) is either monotonically
increasing, or monotonically decreasing in the interval 0
<X=<X. (See Sec. IV for a discussion of this poj)nthus we

» X consider the two cases

{mm:o

] . dx)=0, 0sx<X. (10
FIG. 1. (a) We look for entrained states fulfilling E¢), where
X is defined as the largesfor whichT"’(x) >0 whenevetx| <X. (b) [Fig. (b)], and
The asymmetry functiord(x)=I'(x)+I'(=x). In both panels, the d(0)=0
coupling function(30) is used, witha=0.25. R (11)
dx)<0, 0sx<X.
&= o+ K[ (rer = &) + (s — D)1 (3) We first prove the following:

Proposition 1 For anyN, an entrained state of the desired
We use open boundary conditions, i.e., oscillator 1 is couple#ind (5) exists wheneveK>K_, where
only to oscillator 2, andN is coupled only toN—-1. We as-

sume thatl'(x) is a continuous function, which is at least Kc=wmx—Awm'n (12)
piecewise smooth. Furthermore, we assume that )
Here, wnax and o, are the maximum and minimum natural
{F(O) =0 @) frequencies, respectively.
') =0, I'(0)=0. Our next result is:

Proposition 2 Let w, be independent random numbers

This corresponds to diffusive coupling, which tends to everfrom a distribution with supportwmin, @mad- Then, in the
out phase differences if they are small enough. We look fotimit N—ce, if an entrained state of the desired ki)

frequency-entrained states whefgt) =€ for all k. The con- ~ €Xists, the probability is one th&l=w,, in case(10), and
stantQ is the entrained frequency. In such states, fhel ~ Nat{2=wmiy in case(11). Also, the probability is zero that

phase differenced ¢, = ¢,,1— P are all constants. We re- the system has such an entrained s_tate wherK,.
strict our interest to states for which The last statement is the most important one. Together

with proposition 1, it implies that for random natural fre-
guenciesK, becomes a well-defined critical coupling in the
thermodynamic limit, in the sense that the probability is zero
to have an entrained state of the desired k{B§l when
K<K, and that it is 1 wherK>K_.. For the Kuramoto
model, we should enter zero in the denominator of @4),
meaning that there is no finite coupling strength at which the
chain frequency entrains in the thermodynamic limit, when-
ever the distribution of natural frequencies has nonzero

Let us introduce the vectorso=(wy,...,wn) and A¢  panqwidth. This agrees with the results by Strogatz and
=(A¢y, ..., A¢py-1). Rearranging terms in Eq6), we may  wirollo [6] discussed in Sec. I.

Apd <%, 0Kk, (5)

whereX is defined in Fig. (a).
In an entrained state we may write

Q=+ K[I(=Adyy) +T(A0)]. (6)

then express a functioft RN— RN Finally, we prove:
Proposition 3 The desired entrained statgy are locally
w=f(Q,A¢d). (7) stable.

This ensures that the phase transitioiatan actually be
This  function is invertible in the subspace seen. Now we go on to prove the three statements. We pro-
{Q,A¢;|A¢| <X, Ok}, in which we look for entrained states ceed along the same lines as in R@j, but the arguments
[10], so that we may write become clearer for the present model. We only consider ex-
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FIG. 2. (a) The state wmax A¢’) is constructed from the top to I I i I
the bottom of the chain by adjustiny¢, so that oscillatork is ! |
accelerated to frequenaya. given the decelerating influence it | | i
receives fromk—1. The bars represent the phases of the oscillators | 1 | ! | |
at a given time(b) The state(wna, A¢”) is constructed from bot- | I §*|
tom to top by adjusting\ ¢,_, so that oscillatok is accelerated to | I |
frequencywna. Compare to Fig. 3. \ N N A I ______________j
: i - >

plicitly the case10) whered(x) = 0. At the end of Sec. Il we
comment on cas€ll), whered(x)<O0.

Proof of Proposition 1Let us try to entrain all oscillators FIG. 3. The idea of how to prove proposition 1. Phase profiles
to Q=wnay N the following way: Since)= wy for all k, no  of chains of ten frequency-entrained oscillators. The left entrained
oscillator shall be decelerated. We start by adjustingy state (wmax A¢’) is constructed from top to bottom, according to
=0 so that oscillator 1 is accelerateddq,,,, then we adjust Fig. 2@). The right statéwpay, A¢”) is constructed from bottom to
A¢,=0 so that oscillator 2 is accelerateddg,,, given the  top, according to Fig. ®). The true entrained state),A¢) is
decelerating influence it receives from 1, due to the alreadjound between these states in the senseAlfgt= A= Ady. See
adjustedA¢;=0. Then, we continue in this way down the the text for further expla_nation. In the figure, entrained states of the
chain, as illustrated in Fig.(2). modeI(SO) are shown, witta=0.5 andK=1.0. The natural frequen-

The situation when it is the most difficult to entrain an ¢ies ©®=(1.44,1.03,1.04,1.24,1.23,1.08,1.26,1.49,1.50 128
oscillator k t0 wyg, in this way is whenw,=wm, and random numperg from a square (_Jllstrlbutlon with,i,.=1.0 and
Ag]_,=%. Then, we have Wmax=1.5. This giveK;=1.0 according to Eq.12).

A¢'5:1.00 A¢6 =0.12 A¢II6:_0-40

Omax= Omin+ KII'(=%) + T'(A¢y)] (13 Agp=Ad=Ady, Ok (18

from Eg. (6). It follows from the assumptions oh(x) that
this equation is fulfilled for someé ¢ with |A¢y| <X for all
K>K, [EQ. (12)], but not for anyK=<K,.. Therefore, if
K>K,, we can always construct an entrained state of the d Ay Ay
desired kind for all oscillators—except the last one. Oscilla- 9w, <0, J oy =
tor N is decelerated biN-1, but there is no oscillatdi+1

with which we can speed it up to frequenay,,, However, for an entrained statéQ,A¢)=f"Y(w) of the desired kind.
we may say that we have succeeded in finding the entrainehen A ¢, will decrease throughout the process

state

(Fig. 3). It then follows that X< A <X, as requested. We
succeed in doing this if we can show that

0, DOk (19

wy decreases wq increases

(omanAg") = F4(0"), (14 (naxdd) = (QAS) —  (Omaeld).

for the slightly different assignment of natural frequencies (20)
o' =(wq, ... 051, @), Where <A ¢, <X, Ok, and andA ¢, is trapped in the allowed range, as expressed in Eq.
(18). To prove Eq(19), we use Eq(6) to write

0N = Omax— KT'(= Ady_1) = ©max (15 i
F(A¢) =K Q- w)

By starting at the bottom of the chaifrig. 2(b)] with
oscillatorN, we can, in the same way, construct an entrained

state 1 TAd) =K™HQ - w) ~T'(-Ady-y) (21
(Onan A" = Y0 (16) 5 )
- INAgn-1) =KTH(Q = wneg) —T(— Adpn-s)
for w'=(w},w,, ... wy), Where X<Ag¢;<0,0k, and (A1) (@~ on-g) (= Ady2)
Y . But we can also write
W1 = Wmax~ KF(A¢1) = Wmax- (17) 5

Now we want to show that an entrained stéf®,A ) F(=Ady-) =K@ - on). (22)
=f"Y(w) exists for some\ ¢ with If we differentiate the left- and right-hand sides of E}1)
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with respect tow;, we get equations of the form OA
(
(9A¢1 X0} Wrmax = —
P =Cu ~C12 L
w1 J w1 Q—
dA aQ AP —
P Ca——+ Ckzll (23 Phin
J w1 J w1 J w1 (a)
‘ — /"———>0sc. No.
_3A¢N—1:CN_1 1£+CN—1 2‘9A¢N—2. joj+1 j+M
\ Jd w1 0 w1 ' J w1 ¢‘\
— Ab:
We havecy >0 for all j,k, sincel"(x)>0 for all Agy of — — .\]z.._l"’g(;w
interest. But if we differentiate Eq22) in the same way, we _—
get
Ay aQ
S Cn17 (24) -
Jd w1 o w1
with ¢y ;>0. We proceed to use Eg®3) and(24) to show —

JA Pl dw, <0 by contradiction. Suppose thaf)/dw,;=<0. (b)
Then dA¢,/dw;<0 from the first row of Eg. (23),

A ¢l dw1 <0 from the second row, and so on. From the last FIG. 4. (a) If we assume random natural frequencies in the limit
row we getdAdy_,/ dw; <0, while we getiA g,/ dw, =0 N—oo, there will always be long segmenfs,...,j+M} of the

from Eq.(24). We have a contradiction. Thus oscillator chain, in which all oscillators have a natural frequency
’ w>Q, whenever the entrained frequenQy< wnay. (b) When we
dUdw, > 0. (250 try to decelerate all these oscillators to frequeriy the phase

differencesA ¢, inevitably get smaller and smaller as we move to
the right, so that the conditioig, > —X is finally broken. From this
follows that Q) = w4y by contradiction.

From Eq.(24) it follows that dA ¢y-1/ dw1 < 0. From the last

row of Eq.(23), it then follows thatdA ¢y_o/ dw, <0, from

the second to last row that ¢y-3/dw, <0, and so on, so

that A ¢/ dw, <0 for all k. That ~

o< wmipt 6, for anyM and any positives, however small

I Qdwy> 0, (26) [Fig. X@)]. From Eq.(6) and the fact thaf) = w,,,, We then

and dA ¢,/ dwy >0 for all k can be shown in an analogous have

way, or seen by symmetril

Proof of Proposition 2 We first show thatQ — w,a as Omax < Omin+ 6+ K[[(= Adhyy) + [(Agh)].

N— 0. Applying Egs.(25) and(26) to the proces$20), we  Rearranging terms and using E@8) and (12),

see thatQ) < wpe Suppose thaf) < wpa, In the limit N

—», there is then, with probability, one chain segment  T(A¢,) > I'(Ady_1) + KK A(X) - Kd(A¢py_1) — &].

{j,j*+1,... j+M} in which all natural frequencies, fulfil (27)

w> L for somel with wp,>L > Q (Fig. 4). This holds for

all fixed M, arbitrarily large. All oscillators in this segment We haveA¢,_; <X in an entrained state of the desired kind,

should then be decelerated. We want to show that this imand using the assumptions in cagg0), we get d(X)

plies that|/A¢,| grows without bound in the segment, so that=d(A¢,_,), so that

such entrained states cannot exist. From @y.we have

T(Ad) = -T(= Adyy) = K - Q) < =T(= Adhy) - C, T(Ad) > T(Adpy-) + K (K- K)d(R%) - 8].  (28)

with C=KXL-0)>0. Since T'(-A¢_)=d(A._,)  Thus, if (K.=K)d(X)> & for any positives, then
-I'(A¢,_,) from Eq. (9), andd(A¢,_,)=0 by assumption, _——
we havel'(A¢) <T'(A¢,_,)-C and I(Agjv) > T'(Agy) + MC (29

F(Agjm) <T(Ady) - MC. for some positive C= K (K.~K)d(X)-8]. Therefore,
Therefore, ifM is chosen large enough(A;.) becomes I'(A¢y+a) becomes larger than the maximum valud'af) if
less than the minimum value df(x). Therefore, we must M is chosen large enough. Since this is impossible, and we
haveQ = wy, 8s we claimed. can choose’ as small as we like, we must hate=K... B
We proceed to show that the probability is zero to have an Proof of Proposition 3We investigate the evolution of a
entrained state of the desired kind whérc K. In the same  trajectory ¢’ (t) = ¢(t) + 54(t), where (1) is the periodic tra-
way as above, the probability is 1 that there is a chain segectory corresponding to the entrained state. Linearizing the

ment {J,j+1,... j+M}, in which all oscillatorsk have system(3), we getdp=KJIdp, with
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Let us finally comment on the ca$&0) whered(x) <0,
without going into details. To prove proposition 1, we try to
entrain all oscillators td)=w,,,, starting first from the top,

— giving a state with alA ¢, <0, then from the bottom, giving
— A¢=0. The true entrained state is then trapped between
S + 8 these, just like before. To prove the first part of proposition 2,
Grnin === === we see thaf) > o, gives rise to a long segment of oscilla-
(a) tors that should all be accelerated. Then we show that this
means that\ ¢, grows without bound in the segment, so that
/—=—>0sc. No. we must have()=wp,,. To prove the second part of propo-
sition 2, we use a long chain segment where all oscillators
oA — have w,> wmay— 8, and then show thak <K, implies that
A ¢, drops without bound in the segment, so that we must
haveK =K..

)
A

wmax

IIl. SIMULATIONS

We simulated long oscillator chains, to compare the re-
sulting data with the analytical results obtained in Sec. Il.
The natural frequencies were taken from a square distribu-

FIG. 5. (a) If we assume random natural frequencies in the limit ion With @n=27 tu™ and wyq,=3 t.u™. The forward
N— o0, there will be arbitrarily long segment§, ... .j+M} of the Euler integration method was used, with time step
oscillator chain, in which all oscillators have a natural frequesagy =,0'05 t,'u' To _CheCk the accuracy of the mtegrat'on’, some
close to the minimum frequenaym,. (b) If K<K; and we try to simulations withdt=0.01 t.u. were performed. The differ-
accelerate all these to frequen€y=wya, the phase differences €Nces were found to be negligible. Figure 6 shows results
Ay will grow more and more as we move to the right, so that theffom simulations of chains withN=20 000 oscillators, using
condition A¢ <X is finally broken. Therefore, the chain can only the coupling function
frequency entrain iIK=K..

(b)

I'(x) = sin(x) + a Siré(x). (30
—-by by 0 A transient time of 100 000 t.u. was allowed before the mean
a, —(ay+hy b, frequency of each oscillator was measured during 1000 t.u.

The long transient time was necessary since the standard
deviationo of the distribution of the mean frequencies in the
chain converged only after such a long time around the cou-

0 ay —ay pling strengthK at which the entrainment settled. The error

bars show the standard deviation of data from seven inde-

Here, a=I""(-A¢y-1) and b=1"(A¢,). From the assump- pendent realizationgassignments of natural frequengies
tions (4) and (5), it follows that all &, and b, are non-  The initial condition was always)(0)=0 for all k. The at-
negative.o¢=«a(1,1,...,1 is an eigenvector td with ei-  tained mean frequencies in the chain stayed the same when
genvaluex=0, and corresponds to a perturbation ale@i).  different initial conditions were tested in a given realization.
This entrained trajectory is stable if the eigenvalie0 is  This indicates that the system only has one attractor, and that
nondegenerate, and all other eigenvalues have a negative relaé presented results are independent of the initial condition.
part. We see thak=0 is nondegenerate since the equationwWe cannot prove this, however.

J= a —(ag+by) bs

0=J36¢ implies 6¢p,= ¢4 from the first row,S¢p3= ¢, from For a=0.5, frequency entrainment settled aroukd
the second, and so on, so that=w(1,1,...,0 is the only  =0.45[Fig. §a)], to be compared with the analytical result
possible eigenvector. K.=0.5. Fora=0.25, the corresponding figures afe=0.8
It follows from Gershgorin’s theorem that each eigen-and K.=1.0, respectively. Foa=0 (the Kuramoto modg|
value N must fulfil the chain did not frequency entrain in the range of the inves-
tigated values ofK, in accordance with the resul.=o.
IN=Jl=< 2 19 Figure &b) shows the correlation lengthfor the three mod-
kik] els as functions oK. The quantity¢ was defined as follows:

Let w(x) be the attained mean frequency of the oscillator at

for somej. Therefore, we have positionx (wherex=1,2,3,..). Then the correlation func-

N+ (a+ bj)| <aj+by, tion is F(y):f(y)/f(O), where
for somej. (To make this equation valid for ajl we define f(y) =[x +y) = (@) = (@)])y,
a;=0 andby=0.) Sincea; +b; is a non-negative real number
for all j, it follows that R¢A]<0, and we are dondll and ¢ was chosen as
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1.0

FIG. 6. The results from simulations where the coupling func-  FIG. 7. The results from simulations where the coupling func-

tion (30) was useda=0.5 (solid), 0.25 (dasheg, and 0(dotted. tion (32) was useda=0 (solid), b=0.5 (dasheg, b=1.0 (dotted.

(a) The standard deviation of the distribution of the mean frequen{@ The standard deviation of the distribution of the mean frequen-
cies as functions oK. (b) The (logarithm of correlation lengtné  cies as functions oK. (b) The (logarithm of correlation length¢
among the mean frequencies in the chain as functions of the comong the mean frequencies in the chain as functions of the cou-
pling strengthK. For N— o, we analytically have thatr— 0 and pling strengthK. For N— «, we analytically have thatr— 0 and
£— o at the critical coupling&,=0.5, 1.0, and~ for a=0.5, 0.25,  {— at the critical coupling&.=0.5, 1.0, ande for a=0, 0.5, and

and 0, respectively. 1.0, respectively.

X=

&=y, I'(ymra=1lke.

, x>0 (32)

I'(x) = c(x)sin(x), c(x)= {?

In the cases wher@=0.5 and 0.25¢(K) grew faster than the
exponential, and could be well fitted to a power-law diver-
gence

for b=0.5 and 0(Again, b=1 is the Kuramoto modelThe

results are shown in Fig. 7. F&r=0.5, frequency entrain-

ment settled aK = 0.85, again significantly smaller thag,

. =1. We note that frequency entrainment was actually present
Eoc (Ke—K)“ (31)  at the four last points along the dashed curve in Fig.7

The reason whyr >0 is that the transient time was too short.
(not shown. The best fits were obtained Wim: close to th_e Zf ,r::: g_'stlhféglat'ﬁg r(e;grﬂglr;?/oﬁnlg%ntg(?(ﬂ%%-O;(Ibe)?swz);amly
values at whichor—0 in F’I\g. G@), but the fits were within very well fitted to the power-law divergencel), with

the error margins also witk.=K.. In contrast, for the Kura- » _ " .
moto modela=0, the growth ofé(K) was slower than the Ke=Ke (n_ot AShOWD' Such a fitting was also possible for
b=0.5, with K, larger than 0.85.

exponential, and therefogecannot diverge at a finite critical
coupling. Again, this agrees with the theoretical prediction.
Apparently, even in the long chains we used, frequency
entrainment settled at a coupling strength substantially
smaller tharK.. In Sec. IV we argue that this should always  Why does frequency entrainment settle well beldwin
be the case if'(x)=0 only atx=0. To investigate the behav- most cases? We think it is because the probability is very low
ior of a “completely asymmetric’ model, wherB(x)=0  of having the long segments of the chain with high natural
whenevex=<0, we simulated the model with coupling func- frequenciegFig. 4) used to prove tha=w,,,, and the long
tion segments with low natural frequenciésig. 5), which are

IV. DISCUSSION

016120-6



FREQUENCY ENTRAINMENT IN LONG CHAINS OF.. PHYSICAL REVIEW E 70, 016120(2004)

then needed to prove that frequency entrainment cannot ©max ~ Pmin
settle forK <K.. In other words, we think that, &s$ grows, 0 ;
the probabilityP(N,K) to have frequency entrainment very
slowly approaches the step function that jumps from zero to r=0
one atK. It might be possible to compute the function /
P(N,K), but we have not attempted such a derivation. The — /
situation is different for the “completely asymmetric” cou- /
pling functions where an oscillator speeds up a phase- {
delayed neighbor, but is not itself decelerated by this neigh- AN 7 > K
bor[e.g., model(32) with b=0]. In this case(} is always the
frequency of the fastest oscillator, which will be very close to  FIG. 8. The phase diagram of an oscillator chain. In the phase
wmax If N is reasonably large. It is then enough to havee  with order parameter=0, there are only microscopic clusters of
slow oscillator with a natural frequency very closedigi, 10 entrained oscillators, whereas all oscillators are entrained when
rule out frequency entrainment fé¢<K.. Again, such os- =1. We study the critical line separating the two phases close to the
cillators will be present ifN is reasonably large. Conse- origin, where dynamical equations of the fo(&) can be used.
quently, the frequency entrainment settled very clos& o
for model(32) with b=0 in Fig. 7. ; ~ o ; )
Let us try to explain these statements. If the model isWIth A <X if K> (wmax wm!”.)/|d6()|’ as shown in ex
completely asymmetric in the above sense, we can constru@Ptly the same way as proposition 1.

the entrained state by hand as follows: Identify the oscillator Thus, we have shown that a quite afb'”?‘ry chain of limit-
k with the highest natural frequenay,~ Then, phase cycle oscillators possesses two phases with order parameter
max: ’

delay its upper and lower neighbors by the appropriatézo and 1, respect.lvely, close to the origin of a phase dia-
amounts, so that they are also accelerated to frequepcy 9ram sqch as that in Fig. 8. It is natural to assume that the
By assumption, the frequency of oscillatoiis not affected cntu_:al line separating th_ese two pha_ses can be extrapolated
by this. Continue in the same way upwards and downward higher coupling and wider distribution of natural frequen-
in the chain, and phase delay each new oscillator, until th&/€S, Provided it exists close to the origin. In other words, our
top and bottom are reached. Whenever we come acrossrﬁ_SUPFS suggest that a ger!erall chain of_I|m|t-cycIe oscillators
slow oscillatorj with w; = @y, a phase delay with the maxi- with inherently nonodd _dlffuswe coupling Ppossesses these
mum allowed magnitud is not enough ifK <K_. two phases. Phases with<@<1 are forbidden in one-

It also seems that the more asymmetric the coupling funcdimensional o_scHIator I_attlces. IfQr<1, there should be a
tion, the closer tcK, does frequency entrainment settle—if NONZero d.eljsny of oscillators that are not (_entramed to a pre-
we dare to judge from just the two cases0.25 and 0.5 in sumed |nf|_n|t_e .cluster. quevgr,_these oscillators necessarily
Fig. 6. This would be consistent with the considerationsbr_eak the infinite cluster into finite parts, so that we are left
above. We note that these findings are the same as in Refith @ state where=0. o
[3], where a chain of pulse-coupled oscillators frequency en- Most often the appearance of order is facilitated when the
trained slightly below the critical coupling for a symmetric network connectivity is mc_reased. Therefore, we expect that
phase response curyehere phase delays were as large ag*e'fect frequency entrainmentr=1) also appears in
phase advancgsbut just at the critical coupling for a com- d-dimensional lattices wheré= 2, provided the coupling is
pletely asymmetric phase response cumwkere only phase Nnonodd and the bandwidth of the natural frequencies is finite.
advances were possible However, it is not clear to us how to prove this. The method

The models we used are of the fot@), generally valid in ~ USed in this paper cannot be directly generalized to higher
the limits of weak coupling and narrow distribution of natu- dimensions. Wherd=2, states with 6<r<1 are possible
ral frequencies. However, we made the restrictive assumgnd may appear when the natural frequency distribution has
tions that all coupling functions were the same, i(x) tails or the coupling is not strong enough to allow perfect
=I'(x), and that the coupling was diffusii&q. (4)]. In ad- entrainment. T.here is numerical .eV|der.|ce for such states
dition, we limited ourselves to coupling functiofigx) ful-  [11], but analytical results are again lacking.
filling either casg(10) or (11). The last limitation is not es-
sential if we just want to make sure that there is a critical
coupling. For any’(x) fulfilling Eq. (4), there will always be
aX=xX such thatl'(x) fulfils either Eq.(10) or (11) if we | thank Bernhard Mehlig, who suggested that | do the
replacex with X. Then there will always be an entrained statepresent work.
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