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We study oscillator chains of the formḟk=vk+KfGsfk−1−fkd+Gsfk+1−fkdg, wherefkP f0,2pd is the
phase of oscillatork. In the thermodynamic limit where the number of oscillators goes to infinity, for suitable
choices ofGsxd, we prove that there is a critical coupling strengthKc, above which a stable frequency-entrained
state exists, but below which the probability is zero to have such a state. It is assumed that the natural
frequencies are random with finite bandwidth. A crucial condition onGsxd is that it is nonodd, i.e.,uGsxd
+Gs−xduÞ0. The interest in the results comes from the fact that any chain of limit-cycle oscillators can be
described by equations of the above form in the limits of weak coupling and narrow distribution of natural
frequencies.
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I. INTRODUCTION

Networks of a large numberN of coupled limit-cycle os-
cillators appear in many areas of science[1]. Examples are
pacemaker cells in the brain and heart, swarms of fireflies,
and applauding audiences. Most often there is a spread in the
natural frequencies of the individual oscillators, and the cou-
pling is such that it tends to even out these frequency differ-
ences. A natural question to ask is whether there is a critical
coupling strength at which a macroscopic numbern of oscil-
lators frequency entrain in the thermodynamic limitN→`,
and we enter a regime of collective oscillation. In the lan-
guage of statistical physics, this can be expressed as a phase
transition at which the order parameterr becomes nonzero,
where

r ; lim
N→`

nmax/N. s1d

Here,nmax is the number of members in the largest connected
cluster of entrained oscillators. Such a phase transition is
relevant, for example, in the sinus node in the heart. It con-
sists of millions of pacemaker cells, which have to work at a
common frequency to trigger regular heartbeats, despite the
fact that their natural frequencies differ[2].

We have previously proved that a phase transition of this
kind takes place in a one-dimensional chain of pulse-coupled
oscillators, interacting like cardiac pacemaker cells[3].
There, the order parameterr jumps discontinuously from
zero to one at a critical coupling strength, provided the natu-
ral frequencies are random with a sufficiently narrow band-
width. It would be interesting to obtain a corresponding re-
sult for oscillators obeying the equation

ḟk = vk + Ko
jPnk

G jksf j − fkd, s2d

wherefkP f0,2pd is the phase of oscillatork, nk is the set of
oscillators coupled tok, and G jksxd are 2p-periodic func-
tions. This is done in the present study. The interest in equa-
tions of the form(2) comes from the fact that they describe
any network of limit-cycle oscillators in the limits of weak

coupling and narrow distribution of natural frequencies, as
shown by Y. Kuramoto[4]. It has also been shown that cer-
tain kinds of Josephson junction arrays can be mapped onto
models of this kind[5].

Models of the form(2) have been extensively studied.
Most often it is assumed that all coupling functions are the
same, i.e., thatG jksxd=Gsxd. Kuramoto himself introduced
the modelGsxd=sinsxd. He showed that there is a phase tran-
sition to a nonzero order parameterr if the coupling is global
(all-to-all) [4]. In the case of local(nearest-neighbor) cou-
pling, Strogatz and Mirollo[6] showed that for any finiteK,
the probability for frequency entrainmentsr =1d is zero
whenever the oscillators are placed on a finite-dimensional
lattice, and the natural frequencies are random with nonzero
variance. However, it is still an open question as to whether
states with 0, r ,1 may exist for finiteK. The proof of
Strogatz and Mirollo rests on the fact that the sine function is
odd. Several authors have pointed out that the appearance of
frequency entrainment is facilitated by nonodd coupling, i.e.,
by Gsxd+Gs−xdÞ0. Sakaguchiet al. [7] gave a heuristic
argument of why a chain of oscillators withGsxd=sinsx
−ad+sinsad and random natural frequencies may frequency
entrain if aÞ0. Kopell and Ermentrout[8] showed that a
nonodd coupling enables frequency entrainment in a chain
where the natural frequencies obeyuvk+1−vku=Os1/Nd.
However, this smoothness condition does not allow random
natural frequencies. Rogers and Wille[9] considered the
Kuramoto oscillator chainGsxd=sinsxd with random natural
frequencies whenK~y−a. Here, y is the distance between
two oscillators. They found numerically that states withr
=1 are possible for finiteK when a,2. This is consistent
with the analytical results that showed they are possible with
global couplingsa=0d, but impossible with local coupling
sa=`d.

II. ANALYSIS

In the present paper, we consider an oscillator chain
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ḟk = vk + KfGsfk−1 − fkd + Gsfk+1 − fkdg. s3d

We use open boundary conditions, i.e., oscillator 1 is coupled
only to oscillator 2, andN is coupled only toN−1. We as-
sume thatGsxd is a continuous function, which is at least
piecewise smooth. Furthermore, we assume that

HGs0d = 0

G8s0+d ù 0, G8s0−d ù 0.
J s4d

This corresponds to diffusive coupling, which tends to even
out phase differences if they are small enough. We look for
frequency-entrained states whereḟkstd=V for all k. The con-
stantV is the entrained frequency. In such states, theN−1
phase differencesDfk;fk+1−fk are all constants. We re-
strict our interest to states for which

uDfku , x̂, ∀ k, s5d

wherex̂ is defined in Fig. 1(a).
In an entrained state we may write

V = vk + KfGs− Dfk−1d + GsDfkdg. s6d

Let us introduce the vectorsv=sv1, . . . ,vNd and Df
=sDf1, . . . ,DfN−1d. Rearranging terms in Eq.(6), we may
then express a functionf :RN→RN

v = fsV,Dfd. s7d

This function is invertible in the subspace
hV ,Df ; uDfku, x̂, ∀kj, in which we look for entrained states
[10], so that we may write

sV,Dfd = f−1svd. s8d

In other words, there is at most one entrained statesV ,Dfd
of the desired kind(5) for a given assignment of natural
frequencies.

As expected from previous work, it turns out that the
nonoddity, or asymmetry, ofGsxd is crucial for the appear-
ance of frequency entrainment. We define the even “asym-
metry function”dsxd as

dsxd = Gsxd + Gs− xd s9d

[Fig. 1(b)]. For the Kuramoto model whereGsxd=sinsxd, we
havedsxd;0. For simplicity, we restrict our interest to cou-
pling functionsGsxd, for which dsxd is either monotonically
increasing, or monotonically decreasing in the interval 0
øxø x̂. (See Sec. IV for a discussion of this point.) Thus we
consider the two cases

Hds0d = 0

d8sxd ù 0, 0 ø x ø x̂.
J s10d

[Fig. 1(b)], and

Hds0d = 0

d8sxd ø 0, 0 ø x ø x̂.
J s11d

We first prove the following:
Proposition 1. For anyN, an entrained state of the desired

kind (5) exists wheneverK.Kc, where

Kc =
vmax− vmin

udsx̂du
. s12d

Here,vmax andvmin are the maximum and minimum natural
frequencies, respectively.

Our next result is:
Proposition 2. Let vk be independent random numbers

from a distribution with supportfvmin,vmaxg. Then, in the
limit N→`, if an entrained state of the desired kind(5)
exists, the probability is one thatV=vmax in case(10), and
that V=vmin in case(11). Also, the probability is zero that
the system has such an entrained state whenK,Kc.

The last statement is the most important one. Together
with proposition 1, it implies that for random natural fre-
quencies,Kc becomes a well-defined critical coupling in the
thermodynamic limit, in the sense that the probability is zero
to have an entrained state of the desired kind(5) when
K,Kc, and that it is 1 whenK.Kc. For the Kuramoto
model, we should enter zero in the denominator of Eq.(12),
meaning that there is no finite coupling strength at which the
chain frequency entrains in the thermodynamic limit, when-
ever the distribution of natural frequencies has nonzero
bandwidth. This agrees with the results by Strogatz and
Mirollo [6] discussed in Sec. I.

Finally, we prove:
Proposition 3. The desired entrained states(5) are locally

stable.
This ensures that the phase transition atKc can actually be

seen. Now we go on to prove the three statements. We pro-
ceed along the same lines as in Ref.[3], but the arguments
become clearer for the present model. We only consider ex-

FIG. 1. (a) We look for entrained states fulfilling Eq.(5), where
x̂ is defined as the largestx for which G8sxd.0 wheneveruxu, x̂. (b)
The asymmetry functiondsxd=Gsxd+Gs−xd. In both panels, the
coupling function(30) is used, witha=0.25.
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plicitly the case(10) wheredsxdù0. At the end of Sec. II we
comment on case(11), wheredsxdø0.

Proof of Proposition 1. Let us try to entrain all oscillators
to V=vmax in the following way: SinceVùvk for all k, no
oscillator shall be decelerated. We start by adjustingDf18
ù0 so that oscillator 1 is accelerated tovmax, then we adjust
Df28ù0 so that oscillator 2 is accelerated tovmax, given the
decelerating influence it receives from 1, due to the already
adjustedDf18ù0. Then, we continue in this way down the
chain, as illustrated in Fig. 2(a).

The situation when it is the most difficult to entrain an
oscillator k to vmax in this way is whenvk=vmin and
Dfk−18 = x̂. Then, we have

vmax= vmin + KfGs− x̂d + GsDfkdg s13d

from Eq. (6). It follows from the assumptions onGsxd that
this equation is fulfilled for someDf with uDfku, x̂ for all
K.Kc [Eq. (12)], but not for anyKøKc. Therefore, if
K.Kc, we can always construct an entrained state of the
desired kind for all oscillators—except the last one. Oscilla-
tor N is decelerated byN−1, but there is no oscillatorN+1
with which we can speed it up to frequencyvmax. However,
we may say that we have succeeded in finding the entrained
state

svmax,Df8d = f−1sv8d, s14d

for the slightly different assignment of natural frequencies
v8=sv1, . . . ,vN−1,vN8 d, where 0øDfk8, x̂, ∀k, and

vN8 = vmax− KGs− DfN−18 d ù vmax. s15d

By starting at the bottom of the chain[Fig. 2(b)] with
oscillatorN, we can, in the same way, construct an entrained
state

svmax,Df9d = f−1sv9d s16d

for v9=sv19 ,v2, . . . ,vNd, where −x̂,Dfk9ø0,∀k, and

v19 = vmax− KGsDf19d ù vmax. s17d

Now we want to show that an entrained statesV ,Dfd
= f−1svd exists for someDf with

Dfk8 ù Dfk ù Dfk9, ∀ k s18d

(Fig. 3). It then follows that −x̂,Dfk, x̂, as requested. We
succeed in doing this if we can show that

] Dfk

] v1
, 0,

] Dfk

] vN
. 0, ∀ k s19d

for an entrained statesV ,Dfd= f−1svd of the desired kind.
ThenDfk will decrease throughout the process

svmax,Df8d →
vN decreases

sV,Dfd →
v1 increases

svmax,Df9d,

s20d

andDfk is trapped in the allowed range, as expressed in Eq.
(18). To prove Eq.(19), we use Eq.(6) to write

5
GsDf1d = K−1sV − v1d
A
GsDfkd = K−1sV − vkd − Gs− Dfk−1d
A
GsDfN−1d = K−1sV − vN−1d − Gs− DfN−2d.

6 s21d

But we can also write

Gs− DfN−1d = K−1sV − vNd. s22d

If we differentiate the left- and right-hand sides of Eq.(21)

FIG. 2. (a) The statesvmax,Df8d is constructed from the top to
the bottom of the chain by adjustingDfk8 so that oscillatork is
accelerated to frequencyvmax, given the decelerating influence it
receives fromk−1. The bars represent the phases of the oscillators
at a given time.(b) The statesvmax,Df9d is constructed from bot-
tom to top by adjustingDfk−19 so that oscillatork is accelerated to
frequencyvmax. Compare to Fig. 3.

FIG. 3. The idea of how to prove proposition 1. Phase profiles
of chains of ten frequency-entrained oscillators. The left entrained
statesvmax,Df8d is constructed from top to bottom, according to
Fig. 2(a). The right statesvmax,Df9d is constructed from bottom to
top, according to Fig. 2(b). The true entrained statesV ,Dfd is
found between these states in the sense thatDfk8ùDfkùDfk9. See
the text for further explanation. In the figure, entrained states of the
model(30) are shown, witha=0.5 andK=1.0. The natural frequen-
cies v=s1.44,1.03,1.04,1.24,1.23,1.08,1.26,1.49,1.50,1.25d are
random numbers from a square distribution withvmin=1.0 and
vmax=1.5. This givesKc=1.0 according to Eq.(12).
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with respect tov1, we get equations of the form

5
] Df1

] v1
= c11

] V

] v1
− c12

A
] Dfk

] v1
= ck1

] V

] v1
+ ck2

] Dfk−1

] v1

A
] DfN−1

] v1
= cN−1,1

] V

] v1
+ cN−1,2

] DfN−2

] v1
.

6 s23d

We havecjk.0 for all j ,k, sinceG8sxd.0 for all Dfk of
interest. But if we differentiate Eq.(22) in the same way, we
get

] DfN−1

] v1
= − cN,1

] V

] v1
, s24d

with cN,1.0. We proceed to use Eqs.(23) and(24) to show
]Dfk/]v1,0 by contradiction. Suppose that]V /]v1ø0.
Then ]Df1/]v1,0 from the first row of Eq. (23),
]Df2/]v1,0 from the second row, and so on. From the last
row we get]DfN−1/]v1,0, while we get]DfN−1/]v1ù0
from Eq. (24). We have a contradiction. Thus,

] V/] v1 . 0. s25d

From Eq.(24) it follows that]DfN−1/]v1,0. From the last
row of Eq. (23), it then follows that]DfN−2/]v1,0, from
the second to last row that]DfN−3/]v1,0, and so on, so
that ]Dfk/]v1,0 for all k. That

] V/] vN . 0, s26d

and ]Dfk/]vN.0 for all k can be shown in an analogous
way, or seen by symmetry.j

Proof of Proposition 2. We first show thatV→vmax as
N→`. Applying Eqs.(25) and (26) to the process(20), we
see thatVøvmax. Suppose thatV,vmax. In the limit N
→`, there is then, with probability, one chain segment
h j , j +1, . . . ,j +Mj in which all natural frequenciesvk fulfil
vk.L for someL with vmax.L.V (Fig. 4). This holds for
all fixed M, arbitrarily large. All oscillators in this segment
should then be decelerated. We want to show that this im-
plies thatuDfku grows without bound in the segment, so that
such entrained states cannot exist. From Eq.(6), we have

GsDfkd = − Gs− Dfk−1d − K−1svk − Vd , − Gs− Dfk−1d − C,

with C;K−1sL−Vd.0. Since Gs−Dfk−1d=dsDfk−1d
−GsDfk−1d from Eq. (9), and dsDfk−1dù0 by assumption,
we haveGsDfkd,GsDfk−1d−C and

GsDf j+Md , GsDf jd − MC.

Therefore, ifM is chosen large enough,GsDf j+Md becomes
less than the minimum value ofGsxd. Therefore, we must
haveV=vmax as we claimed.

We proceed to show that the probability is zero to have an
entrained state of the desired kind whenK,Kc. In the same
way as above, the probability is 1 that there is a chain seg-

ment h j̃ , j̃ +1, . . . ,j̃ +M̃j, in which all oscillators k have

vk,vmin+d, for any M̃ and any positived, however small
[Fig. 5(a)]. From Eq.(6) and the fact thatV=vmax, we then
have

vmax, vmin + d + KfGs− Dfk−1d + GsDfkdg.

Rearranging terms and using Eqs.(9) and (12),

GsDfkd . GsDfk−1d + K−1fKcdsx̂d − KdsDfk−1d − dg.

s27d

We haveDfk−1, x̂ in an entrained state of the desired kind,
and using the assumptions in case(10), we get dsx̂d
ùdsDfk−1d, so that

GsDfkd . GsDfk−1d + K−1fsKc − Kddsx̂d − dg. s28d

Thus, if sKc−Kddsx̂d.d for any positived, then

GsDf j+Md . GsDf jd + M̃C̃ s29d

for some positive C̃;K−1fsKc−Kddsx̂d−dg. Therefore,
GsDf j+M̃d becomes larger than the maximum value ofGsxd if

M̃ is chosen large enough. Since this is impossible, and we
can choosed as small as we like, we must haveKùKc. j

Proof of Proposition 3. We investigate the evolution of a
trajectoryf8std=fstd+dfstd, wherefstd is the periodic tra-
jectory corresponding to the entrained state. Linearizing the

system(3), we getdf=KJḋf, with

FIG. 4. (a) If we assume random natural frequencies in the limit
N→`, there will always be long segmentsh j , . . . ,j +Mj of the
oscillator chain, in which all oscillators have a natural frequency
vk.V, whenever the entrained frequencyV,vmax. (b) When we
try to decelerate all these oscillators to frequencyV, the phase
differencesDfk inevitably get smaller and smaller as we move to
the right, so that the conditionDfk.−x̂ is finally broken. From this
follows thatV=vmax by contradiction.
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J =1
− b1 b1 0

a2 − sa2 + b2d b2

a3 − sa3 + b3d b3

�

0 aN − aN

2 .

Here, ak=G8s−Dfk−1d and bk=G8sDfkd. From the assump-
tions (4) and (5), it follows that all ak and bk are non-
negative.df=as1,1, . . . ,1d is an eigenvector toJ with ei-
genvaluel=0, and corresponds to a perturbation alongfstd.
This entrained trajectory is stable if the eigenvaluel=0 is
nondegenerate, and all other eigenvalues have a negative real
part. We see thatl=0 is nondegenerate since the equation
0=Jdf implies df2=df1 from the first row,df3=df2 from
the second, and so on, so thatdf=as1,1, . . . ,1d is the only
possible eigenvector.

It follows from Gershgorin’s theorem that each eigen-
valuel must fulfil

ul − Jjj u ø o
k;kÞ j

uJjku

for somej . Therefore, we have

ul + saj + bjdu ø aj + bj ,

for somej . (To make this equation valid for allj , we define
a1=0 andbN=0.) Sinceaj +bj is a non-negative real number
for all j , it follows that Reflgø0, and we are done.j

Let us finally comment on the case(10) wheredsxdø0,
without going into details. To prove proposition 1, we try to
entrain all oscillators toV=vmin, starting first from the top,
giving a state with allDfk8ø0, then from the bottom, giving
Dfk9ù0. The true entrained state is then trapped between
these, just like before. To prove the first part of proposition 2,
we see thatV.vmin gives rise to a long segment of oscilla-
tors that should all be accelerated. Then we show that this
means thatDfk grows without bound in the segment, so that
we must haveV=vmin. To prove the second part of propo-
sition 2, we use a long chain segment where all oscillators
havevk.vmax−d, and then show thatK,Kc implies that
Dfk drops without bound in the segment, so that we must
haveKùKc.

III. SIMULATIONS

We simulated long oscillator chains, to compare the re-
sulting data with the analytical results obtained in Sec. II.
The natural frequencies were taken from a square distribu-
tion with vmin=2p t.u.−1 and vmax=3p t.u.−1. The forward
Euler integration method was used, with time stepdt
=0.05 t.u. To check the accuracy of the integration, some
simulations withdt=0.01 t.u. were performed. The differ-
ences were found to be negligible. Figure 6 shows results
from simulations of chains withN=20 000 oscillators, using
the coupling function

Gsxd = sinsxd + a sin2sxd. s30d

A transient time of 100 000 t.u. was allowed before the mean
frequency of each oscillator was measured during 1000 t.u.
The long transient time was necessary since the standard
deviations of the distribution of the mean frequencies in the
chain converged only after such a long time around the cou-
pling strengthK at which the entrainment settled. The error
bars show the standard deviation of data from seven inde-
pendent realizations(assignments of natural frequencies).
The initial condition was alwaysfks0d=0 for all k. The at-
tained mean frequencies in the chain stayed the same when
different initial conditions were tested in a given realization.
This indicates that the system only has one attractor, and that
the presented results are independent of the initial condition.
We cannot prove this, however.

For a=0.5, frequency entrainment settled aroundK
=0.45 [Fig. 6(a)], to be compared with the analytical result
Kc=0.5. Fora=0.25, the corresponding figures areK<0.8
and Kc=1.0, respectively. Fora=0 (the Kuramoto model),
the chain did not frequency entrain in the range of the inves-
tigated values ofK, in accordance with the resultKc=`.
Figure 6(b) shows the correlation lengthj for the three mod-
els as functions ofK. The quantityj was defined as follows:
Let ṽsxd be the attained mean frequency of the oscillator at
position x (wherex=1,2,3, . . .). Then the correlation func-

tion is Gsyd=G̃syd / G̃s0d, where

G̃syd = kfṽsx + yd − kṽlgfṽsxd − kṽlglx,

andj was chosen as

FIG. 5. (a) If we assume random natural frequencies in the limit

N→`, there will be arbitrarily long segmentsh j̃ , . . . ,j̃ +M̃j of the
oscillator chain, in which all oscillators have a natural frequencyvk

close to the minimum frequencyvmin. (b) If K,Kc and we try to
accelerate all these to frequencyV=vmax, the phase differences
Dfk will grow more and more as we move to the right, so that the
condition Dfk, x̂ is finally broken. Therefore, the chain can only
frequency entrain ifKùKc.
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j = y, Gsyd/Gs1d = 1/e.

In the cases wherea=0.5 and 0.25,jsKd grew faster than the
exponential, and could be well fitted to a power-law diver-
gence

j ~ sK̂c − Kda s31d

(not shown). The best fits were obtained withK̂c close to the
values at whichs→0 in Fig. 6(a), but the fits were within

the error margins also withK̂c=Kc. In contrast, for the Kura-
moto modela=0, the growth ofjsKd was slower than the
exponential, and thereforej cannot diverge at a finite critical
coupling. Again, this agrees with the theoretical prediction.

Apparently, even in the long chains we used, frequency
entrainment settled at a coupling strength substantially
smaller thanKc. In Sec. IV we argue that this should always
be the case ifGsxd=0 only atx=0. To investigate the behav-
ior of a “completely asymmetric” model, whereGsxd=0
wheneverxø0, we simulated the model with coupling func-
tion

Gsxd = csxdsinsxd, csxd = Hb, x ø 0

1, x . 0
s32d

for b=0.5 and 0.(Again, b=1 is the Kuramoto model.) The
results are shown in Fig. 7. Forb=0.5, frequency entrain-
ment settled atK<0.85, again significantly smaller thanKc
=1. We note that frequency entrainment was actually present
at the four last points along the dashed curve in Fig. 7(a).
The reason whys.0 is that the transient time was too short.
For b=0, the chain frequency entrained more or less exactly
at Kc=0.5. Also, the correlation lengthjsKd [Fig. 7(b)] was
very well fitted to the power-law divergence(31), with

K̂c=Kc (not shown). Such a fitting was also possible for

b=0.5, with K̂c larger than 0.85.

IV. DISCUSSION

Why does frequency entrainment settle well belowKc in
most cases? We think it is because the probability is very low
of having the long segments of the chain with high natural
frequencies(Fig. 4) used to prove thatV=vmax, and the long
segments with low natural frequencies(Fig. 5), which are

FIG. 6. The results from simulations where the coupling func-
tion (30) was used.a=0.5 (solid), 0.25 (dashed), and 0 (dotted).
(a) The standard deviation of the distribution of the mean frequen-
cies as functions ofK. (b) The (logarithm of) correlation lengthj
among the mean frequencies in the chain as functions of the cou-
pling strengthK. For N→`, we analytically have thats→0 and
j→` at the critical couplingsKc=0.5, 1.0, and̀ for a=0.5, 0.25,
and 0, respectively.

FIG. 7. The results from simulations where the coupling func-
tion (32) was used.a=0 (solid), b=0.5 (dashed), b=1.0 (dotted).
(a) The standard deviation of the distribution of the mean frequen-
cies as functions ofK. (b) The (logarithm of) correlation lengthj
among the mean frequencies in the chain as functions of the cou-
pling strengthK. For N→`, we analytically have thats→0 and
j→` at the critical couplingsKc=0.5, 1.0, and̀ for a=0, 0.5, and
1.0, respectively.
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then needed to prove that frequency entrainment cannot
settle forK,Kc. In other words, we think that, asN grows,
the probabilityPsN,Kd to have frequency entrainment very
slowly approaches the step function that jumps from zero to
one at Kc. It might be possible to compute the function
PsN,Kd, but we have not attempted such a derivation. The
situation is different for the “completely asymmetric” cou-
pling functions where an oscillator speeds up a phase-
delayed neighbor, but is not itself decelerated by this neigh-
bor [e.g., model(32) with b=0]. In this case,V is always the
frequency of the fastest oscillator, which will be very close to
vmax if N is reasonably large. It is then enough to haveone
slow oscillator with a natural frequency very close tovmin to
rule out frequency entrainment forK,Kc. Again, such os-
cillators will be present ifN is reasonably large. Conse-
quently, the frequency entrainment settled very close toKc
for model (32) with b=0 in Fig. 7.

Let us try to explain these statements. If the model is
completely asymmetric in the above sense, we can construct
the entrained state by hand as follows: Identify the oscillator
k with the highest natural frequencyvk<vmax. Then, phase
delay its upper and lower neighbors by the appropriate
amounts, so that they are also accelerated to frequencyvk.
By assumption, the frequency of oscillatork is not affected
by this. Continue in the same way upwards and downwards
in the chain, and phase delay each new oscillator, until the
top and bottom are reached. Whenever we come across a
slow oscillatorj with v j <vmin, a phase delay with the maxi-
mum allowed magnitudex̂ is not enough ifK,Kc.

It also seems that the more asymmetric the coupling func-
tion, the closer toKc does frequency entrainment settle—if
we dare to judge from just the two casesa=0.25 and 0.5 in
Fig. 6. This would be consistent with the considerations
above. We note that these findings are the same as in Ref.
[3], where a chain of pulse-coupled oscillators frequency en-
trained slightly below the critical coupling for a symmetric
phase response curve(where phase delays were as large as
phase advances), but just at the critical coupling for a com-
pletely asymmetric phase response curve(where only phase
advances were possible).

The models we used are of the form(2), generally valid in
the limits of weak coupling and narrow distribution of natu-
ral frequencies. However, we made the restrictive assump-
tions that all coupling functions were the same, i.e.,G jksxd
=Gsxd, and that the coupling was diffusive[Eq. (4)]. In ad-
dition, we limited ourselves to coupling functionsGsxd ful-
filling either case(10) or (11). The last limitation is not es-
sential if we just want to make sure that there is a critical
coupling. For anyGsxd fulfilling Eq. (4), there will always be
a x̃ø x̂ such thatGsxd fulfils either Eq. (10) or (11) if we
replacex̂ with x̃. Then there will always be an entrained state

with uDfku, x̃ if K. svmax−vmind / udsx̃du, as shown in ex-
actly the same way as proposition 1.

Thus, we have shown that a quite arbitrary chain of limit-
cycle oscillators possesses two phases with order parameter
r =0 and 1, respectively, close to the origin of a phase dia-
gram such as that in Fig. 8. It is natural to assume that the
critical line separating these two phases can be extrapolated
to higher coupling and wider distribution of natural frequen-
cies, provided it exists close to the origin. In other words, our
results suggest that a general chain of limit-cycle oscillators
with inherently nonodd diffusive coupling possesses these
two phases. Phases with 0, r ,1 are forbidden in one-
dimensional oscillator lattices. If 0, r ,1, there should be a
nonzero density of oscillators that are not entrained to a pre-
sumed infinite cluster. However, these oscillators necessarily
break the infinite cluster into finite parts, so that we are left
with a state wherer =0.

Most often the appearance of order is facilitated when the
network connectivity is increased. Therefore, we expect that
perfect frequency entrainmentsr =1d also appears in
d-dimensional lattices wheredù2, provided the coupling is
nonodd and the bandwidth of the natural frequencies is finite.
However, it is not clear to us how to prove this. The method
used in this paper cannot be directly generalized to higher
dimensions. Whendù2, states with 0, r ,1 are possible
and may appear when the natural frequency distribution has
tails or the coupling is not strong enough to allow perfect
entrainment. There is numerical evidence for such states
[11], but analytical results are again lacking.

ACKNOWLEDGMENT

I thank Bernhard Mehlig, who suggested that I do the
present work.

[1] A. Pikovsky, M. Rosenblum, and J. Kurths,Synchronization: A
Universal Concept in Nonlinear Science(Cambridge Univer-
sity Press, Cambridge, 2001); S. Strogatz,Sync: The Emerging
Science of Spontaneous Order(Hyperion, New York, 2003).

[2] P. Östborn, B. Wohlfart, and G. Ohlén, J. Theor. Biol.211, 201
(2001); P. Östborn, G. Ohlén, and B. Wohlfart,ibid. 211, 219
(2001).

[3] P. Östborn, Phys. Rev. E66, 016105(2002).

FIG. 8. The phase diagram of an oscillator chain. In the phase
with order parameterr =0, there are only microscopic clusters of
entrained oscillators, whereas all oscillators are entrained whenr
=1. We study the critical line separating the two phases close to the
origin, where dynamical equations of the form(2) can be used.

FREQUENCY ENTRAINMENT IN LONG CHAINS OF… PHYSICAL REVIEW E 70, 016120(2004)

016120-7



[4] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence
(Springer, Berlin, 1984).

[5] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett.
76, 404 (1996); B. C. Daniels, S. T. Dissanayake, and B. R.
Trees, Phys. Rev. E67, 026216(2003).

[6] S. H. Strogatz and R. E. Mirollo, Physica D31, 143 (1988).
[7] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor.

Phys. 79, 1069(1988).
[8] N. Kopell and G. B. Ermentrout, SIAM(Soc. Ind. Appl.

Math.) J. Appl. Math. 50, 1014(1990).
[9] J. L. Rogers and L. T. Wille, Phys. Rev. E54, R2193(1996).

[10] Write v= fsud. If f is to map two pointsu1 andu2 to the same
v, then, for somej andk, ]v j /]uk must change sign at someu.
But ]v j /]V.0, and]v j /]Dfk is either identically zero, or
strictly positive or negative whenuDfku, x̂.

[11] P. Östborn, S. Åberg, and G. Ohlén, Phys. Rev. E68,
015104(R) (2003).

PER ÖSTBORN PHYSICAL REVIEW E70, 016120(2004)

016120-8


